Skip to main content
Log in

Finite-Element Crystal Plasticity on Phase-Field Microstructures: Predicting Mechanical Response Variations in Ni-Based Single-Crystal Superalloys

  • Multiscale Computational Strategies for Heterogeneous Materials with Defects: Coupling Modeling with Experiments and Uncertainty Quantification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The mechanical response of Ni-based single-crystal superalloys is known to be sensitive to the microstructural state, i.e., the shape and size of the γ′ precipitates when exposed to high-temperature conditions. The magnitude and sign of the natural lattice misfit between the γ and γ′ phases play the most crucial role in establishing a controlled size, shape, and distribution of γ′ precipitates during heat treatments as well as in defining the direction of rafting, viz. the directional coalescence of the γ′ precipitates. In this study, a bottom-up scale bridging strategy of using phase-field informed finite-element (FE) crystal plasticity on realistic microstructures is followed to better understand the effect of the microstructural state on the macro-scale performance of a \( \left\langle {001} \right\rangle \)-oriented Ni-based single-crystal superalloy. Strain-controlled tensile tests using FE crystal plasticity were performed on a set of different microstructural states: cuboidal, rafted, and topologically inverted imported from 3D phase-field simulations. The study revealed that a cuboidal microstructure with a natural lattice misfit of − 0.004 is the most ductile. As observed experimentally, the microstructure with rafts perpendicular to the loading axis (N-type) is more ductile than the cuboidal one. The P-type microstructure, i.e., with rafts parallel to the loading axis, is found to have the lowest ductility, which was attributed to lesser dislocation mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Cormier, Behavior of the single crystal superalloy MC2 during high and very-high non-isothermal creep loading (Ph.D. Thesis, ENSMA—Université de Poitiers, France, 2006)

  2. J.-B. le Graverend, J. Cormier, F. Gallerneau, S. Kruch, and J. Mendez, Int. J. Fatigue 91, 257 (2016).

    Article  Google Scholar 

  3. P. Caron and T. Khan, Mat. Sci. Eng. 61, 173 (1983).

    Article  Google Scholar 

  4. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge: Cambridge University Press, 2006).

    Book  Google Scholar 

  5. J.-B. le Graverend, J. Cormier, F. Gallerneau, S. Kruch, and J. Mendez, Mater. Des. 56, 990 (2014).

    Article  Google Scholar 

  6. H. Long, S. Mao, Y. Liu, H. Wei, Q. Deng, Y. Chen, Z. Zhang, and X. Han, Mater. Des. 167, 107633 (2019).

    Article  Google Scholar 

  7. D. Ayrault, Fluage à haute température de superalliages base nickel monocristallins (France: Ecole Nationale Supérieure des Mines de Paris, 1989).

    Google Scholar 

  8. M.V. Nathal and R.A. Mackay, Mater. Sci. Eng. 85, 127 (1987).

    Article  Google Scholar 

  9. S. Li, J. Tao, T. Sugui, and H. Zhuangqi, Mater. Sci. Eng. A 454, 461 (2007).

    Google Scholar 

  10. U. Tetzlaff and H. Mughrabi, Enhancement of the high-temperature tensile creep strength of monocrystalline nickel-base superalloys by pre-rafting in compression, ed. T. M. Pollock et al. International Symposium on Superalloys, Seven Springs, PA, TMS, 2000, p. 273

  11. M. Ott and H. Mughrabi, Mater. Sci. Eng. A 272, 24 (1999).

    Article  Google Scholar 

  12. R.A. MacKay and L. Ebert, Metall. Mat. Trans. A 16, 1969 (1985).

    Article  Google Scholar 

  13. M. Pessah-Simonetti, P. Caron, and T. Khan, Effect of mu phase on the mechanical properties of a nickel-base single crystal superalloy, ed. S. D. Antolovitch et al. International Symposium on Superalloys, Seven Springs, PA, TMS, 2000), p. 567

  14. L. Espié, Etude expérimentale et modélisation numérique du comportement de monocristaux de superalliages (PhD Thesis, Ecole Nationale Supérieure des Mines de Paris, France), 1996

  15. A. Gaubert, Modélisation des effets de l’evolution microstructurale sur le comportement mécanique du superalliage monocristallin AM1 (PhD Thesis, Ecole Nationale Supèrieure des Mines de Paris, France, 2009)

  16. M. Ott, U. Tetzlaff, and H. Mughrabi, Influence of directional coarsening on the isothermal high-temperature fatigue behaviour of the monocrystalline nickel-base superalloys CMSX-6 and CMSX-4, ed. H. Mughrabi et al., Microstructure and mechanical properties of metallic high temperature materials (Deutsche Forschungsgemeinschaft, Bonn, Germany, 1999), p. 425

  17. C.C. Engler-Pinto, C. Noseda, M.Y. Nazmy, and F. Rezai-Aria, Interaction between creep and thermo-mechanical fatigue of CM247LC-DS, ed. R. D. Kissinger et al. (International Symposium on Superalloys, Seven Springs, PA, TMS, 1996), p. 319

  18. R. Giraud, J. Cormier, Z. Hervier, D. Bertheau, K. Harris, J. Wahl, X. Milhet, J. Mendez, and A. Organista, Effect of the prior microstructure degradation on the high temperature/low stress non-isothermal creep behavior of CMSX-4 Ni-based single crystal superalloy, ed. R. S. Huron et al. (International Symposium on Superalloys, Seven Springs, PA, TMS, 2012), p. 265

  19. D. Arrell, M. Hasselqvist, C. Sommer, and J. Moverare, On TMF damage, degradation effects, and the associated TMIN influence on TMF test results in γ/γ′ Alloys, ed. K. A. Green et al.. (International Symposium on Superalloys, Seven Springs, PA, TMS, 2004), p. 291

  20. J.-B. le Graverend, J. Cormier, F. Gallerneau, P. Villechaise, S. Kruch, and J. Mendez, Int. J. Plast 59, 55 (2014).

    Article  Google Scholar 

  21. B. Fedelich, G. Künecke, A.I. Epishin, T. Link, and P.D. Portella, Mat. Sci. Eng. A 510–511, 273 (2009).

    Article  Google Scholar 

  22. T. Tinga, W.A.M. Brekelmans, and M.G.D. Geers, Comp. Mat. Sci. 47, 471 (2009).

    Article  Google Scholar 

  23. R. Desmorat, A. Mattiello, and J. Cormier, Int. J. Plast. 95, 43 (2017).

    Article  Google Scholar 

  24. H.-J. Chang, M.C. Fivel, and J.-L. Strudel, Int. J. Plast. 108, 21 (2018).

    Article  Google Scholar 

  25. R.S. Kumar, A.-J. Wang, and D.L. McDowell, Int. J. Fract. 137, 173 (2006).

    Article  Google Scholar 

  26. M. Okazaki and M. Sakaguchi, Int. J. Fatigue 30, 318 (2008).

    Article  Google Scholar 

  27. W.-P. Wu, Y.-F. Guo, G.-S. Dui, and Y.-S. Wang, Comp. Mat. Sci. 44, 259 (2008).

    Article  Google Scholar 

  28. E.P. Busso, N.P. O’Dowd, and R.J. Dennis, A rate dependent formulation for void growth in single crystal materials, ed. S. Murakami and N. Ohno (IUTAM Symposium on Creep in Structures, Dordrecht, the Netherlands, Springer, 2001), p. 41

  29. L. Müller, U. Glatzel, and M. Feller-Kniepmeier, Acta Metall. Mater. 41, 3401 (1993).

    Article  Google Scholar 

  30. R. Harikrishnan and J.-B. le Graverend, Mater. Des. 160, 405 (2018).

    Article  Google Scholar 

  31. I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, and J.L.L. Rezende, Physica D 94, 135 (1996).

    Article  Google Scholar 

  32. L. Méric and G. Cailletaud, J. Eng. Mater. Technol. 113, 171 (1991).

    Article  Google Scholar 

  33. I. Steinbach, Model. Simul. Mater. Sci. Eng. 17, 073001 (2009).

    Article  Google Scholar 

  34. M. Cottura, Y. Le Bouar, B. Appolaire, and A. Finel, Acta Mater. 94, 15 (2015).

    Article  Google Scholar 

  35. D. Bellet and P. Bastie, Phil. Mag. B 64, 143 (1991).

    Article  Google Scholar 

  36. J.S. Van Sluytman and T.M. Pollock, Acta Mater. 60, 1771 (2012).

    Article  Google Scholar 

  37. K. Serin, G. Göbenli, and G. Eggeler, Mat. Sci. Eng. A 387–389, 133 (2004).

    Article  Google Scholar 

  38. X.P. Tan, J.L. Liu, T. Jin, Z.Q. Hu, H.U. Hong, B.G. Choi, I.S. Kim, and C.Y. Jo, Mater. Sci. Eng. A 528, 8381 (2011).

    Article  Google Scholar 

  39. R.J. Asaro, Adv. Appl. Mech. 23, 1 (1983).

    Article  Google Scholar 

  40. J.W. Hutchinson, Proc. R. Soc. Lond. A Math. Phys. Sci. 319, 247 (1970)

  41. U.F. Kocks, Metall. Mater. Trans. 1, 1121 (1970).

    Article  Google Scholar 

  42. P. Franciosi, Acta Metall. 33, 1601 (1985).

    Article  Google Scholar 

  43. D. Nouailhas, P. Pacou, G. Cailletaud, F. Hanriot, and L. Rémy, Adv. Multiaxial Fatigue 114, 244 (1993).

    Article  Google Scholar 

  44. L. Méric, P. Poubanne, and G. Cailletaud, J. Eng. Mater. Technol. 113, 162 (1991).

    Article  Google Scholar 

  45. Z-set.

  46. M. Fahrmann, W. Hermann, E. Fahrmann, A. Boegli, T.M. Pollock, and H.G. Sockel, Mater. Sci, Eng. A 260, 212 (1999).

  47. D. Siebörger, H. Knake, and U. Glatzel, Mat. Sci. Eng. A 298, 26 (2001).

    Article  Google Scholar 

  48. J.F. Ganghoffer, A. Hazotte, S. Denis, and A. Simon, Scripta Metall. Mater. 25, 2491 (1991).

    Article  Google Scholar 

  49. T.M. Pollock and A.S. Argon, Acta Metall. Mater. 42, 1859 (1994).

    Article  Google Scholar 

  50. H. Yasuda, T. Takasugi, and M. Koiwa, Acta Metall. Mater. 40, 381 (1992).

    Article  Google Scholar 

  51. S.W. Yang, Metall. Trans. A 16, 661 (1985).

    Article  Google Scholar 

  52. L. Müller, U. Glatzel, and M. Feller-Kniepmeier, Acta Metall. Mater. 40, 1321 (1992).

    Article  Google Scholar 

  53. J. Gayda and R.A. MacKay, Scripta Metall. 23, 1835 (1989).

    Article  Google Scholar 

  54. F. Diologent, Comportement en fluage et en traction de superalliages monocristallins a base de nickel (PhD Thesis, Université de Paris sud, Centre d’Orsay, France, 2002).

  55. T.M. Pollock and A.S. Argon, Acta Metall. Mater. 40, 1 (1992).

    Article  Google Scholar 

  56. D.W. MacLachlan, G.S.K. Gunturi, and D.M. Knowles, Comp. Mat. Sci. 25, 129 (2002).

    Article  Google Scholar 

  57. A. Fredholm and J.-L. Strudel On the creep resistance of some nickel base single crystals, ed. M. Gell. (International Symposium on Superalloys, Seven Springs, PA, TMS, 1984), p. 211

  58. A. Nitz and E. Nembach, Metall. Mat. Trans. A 29, 799 (1998).

    Article  Google Scholar 

  59. M. Demura, D. Golberg, and T. Hirano, Intermetallics 15, 1322 (2007).

    Article  Google Scholar 

  60. F.M. Beremin, A. Pineau, F. Mudry, J.-C. Devaux, Y. D’Escatha, and P. Ledermann, Metall. Trans. A 14, 2277 (1983).

    Article  Google Scholar 

  61. J.-B. le Graverend, Int. J. Plast. (2019).

  62. R.C. Reed, N. Matan, D.C. Cox, M.A. Rist, and C.M.F. Rae, Acta Mater. 47, 3367 (1999).

    Article  Google Scholar 

  63. P. Caron, Y. Ohta, Y.G. Nakagawa, and T. Khan: Creep deformation anisotropy in single crystal superalloys, ed. S. Reichman et al. (International Symposium on Superalloys, Seven Springs, PA, TMS, 2000), p. 215

  64. J.R. Rice and D.M. Tracey, J. Mech. Phys. Solids 17, 201 (1969).

    Article  Google Scholar 

  65. M. Simonetti and P. Caron, Mater. Sci, Eng. A 254, 1 (1998)

  66. A. Misra and R. Gibala, Metall. Mat. Trans. A 28, 795 (1997).

    Google Scholar 

Download references

Acknowledgements

The simulations were performed using the computing resources from Laboratory for Molecular Simulation (LMS) and High Performance Research Computing (HPRC) at Texas A&M University. The authors are grateful to Mr. James Fillerup and the financial support from AFOSR through Award No.: FA9550-17-1-0233 to carry out this study. We also acknowledge Dr. Adrian Loghin and GE Global Research for their support and interest in our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Briac le Graverend.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

le Graverend, JB., Harikrishnan, R. Finite-Element Crystal Plasticity on Phase-Field Microstructures: Predicting Mechanical Response Variations in Ni-Based Single-Crystal Superalloys. JOM 71, 2600–2611 (2019). https://doi.org/10.1007/s11837-019-03580-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03580-y

Navigation