Suppression of Void Formation at Sn/Cu Joint Due to Twin Formation in Cu Electrodeposit


The use of organic additives is crucial for Cu electrodeposition. However, specific impure species originating from the additives are incorporated in the Cu electroplated layer, causing serious reliability problems such as void formation at the solder/Cu joints. In this study, three Cu substrates were electroplated using various additive formulas. The use of organic additives results in an incorporation of a higher level of impurity in the Cu-electroplated layers and also affects the atomic deposition behavior of Cu which alters the grain microstructures. By using a specific additive formula, the grain growth of Cu evolves into a slender structure with a high density of twins. Thermal aging experiments of the Sn/Cu joints show that the void formation is successfully suppressed at the joint using a slender-grained Cu substrate, and that the suppression effect is attributed to the high microstructural stability of the twinning structure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    J.V. Olmen, C. Huyghebaert, J. Coenen, J.V. Aelst, E. Sleeckx, A.V. Ammel, S. Armini, G. Katti, J. Vaes, and W. Dehaene, Microelectron. Eng. 88, 745 (2011).

    Article  Google Scholar 

  2. 2.

    L. Hofmann, R. Ecke, S.E. Schulz, and T. Gessner, Microelectron. Eng. 88, 705 (2011).

    Article  Google Scholar 

  3. 3.

    T. Moffat and D. Josell, J. Electrochem. Soc. 159, D208 (2012).

    Article  Google Scholar 

  4. 4.

    J.J. Sun, K. Kondo, T. Okamura, S. Oh, M. Tomisaka, H. Yonemura, M. Hoshino, and K. Takahashi, J. Electrochem. Soc. 150, G355 (2003).

    Article  Google Scholar 

  5. 5.

    W.P. Dow, M.Y. Yen, W.B. Lin, and S.W. Ho, J. Electrochem. Soc. 152, C769 (2005).

    Article  Google Scholar 

  6. 6.

    Z.V. Feng, X. Li, and A.A. Gewirth, J. Phys. Chem. B 9415, 107 (2003).

    Google Scholar 

  7. 7.

    J.J. Kelly and A.C. West, J. Electrochem. Soc. 145, 3472 (1998).

    Article  Google Scholar 

  8. 8.

    M. Hayase, M. Taketani, K. Aizawa, T. Hatsuzawa, and K. Hayabusa, Electrochem. Solid State Lett. 5, C98 (2002).

    Article  Google Scholar 

  9. 9.

    H.K. Cheng, C.W. Huang, H. Lee, Y.L. Wang, T.F. Liu, and C.M. Chen, J. Alloys Compd. 622, 529 (2015).

    Article  Google Scholar 

  10. 10.

    C.P. Lin, C.M. Chen, and Y.W. Yen, J. Alloys Compd. 591, 297 (2014).

    Article  Google Scholar 

  11. 11.

    K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, and K. Tu, J. Appl. Phys. 97, 024508 (2005).

    Article  Google Scholar 

  12. 12.

    Y.W. Wang, Y. Lin, and C.R. Kao, Microelectron. Reliab. 49, 248 (2009).

    Article  Google Scholar 

  13. 13.

    C.E. Ho, T.T. Kuo, C.C. Wang, and W.H. Wu, Electron. Mater. Lett. 8, 495 (2012).

    Article  Google Scholar 

  14. 14.

    M. Stangl, J. Acker, S. Oswald, M. Uhlemann, T. Gemming, S. Baunack, and K. Wetzig, Microelectron. Eng. 84, 54 (2007).

    Article  Google Scholar 

  15. 15.

    C.C. Chen, C.H. Hsieh, Y.W. Lee, C.H. Yang, and C.E. Ho, Thin Solid Films 596, 209 (2015).

    Article  Google Scholar 

  16. 16.

    T.Y. Yu, H. Lee, H.L. Hsu, W.P. Dow, H.K. Cheng, K.C. Liu, and C.M. Chen, J. Electrochem. Soc. 163, D734 (2016).

    Article  Google Scholar 

  17. 17.

    L.L. Lia and C.J. Yang, J. Electrochem. Soc. 164, 315 (2017).

    Article  Google Scholar 

  18. 18.

    Y.D. Chiu and W.P. Dow, J. Electrochem. Soc. 160, D3021 (2013).

    Article  Google Scholar 

  19. 19.

    J.Y. Wu, H. Lee, C.H. Wu, C.F. Lin, W.P. Dow, and C.M. Chen, J. Electrochem. Soc. 161, D522 (2014).

    Article  Google Scholar 

  20. 20.

    H. Lee, T.Y. Yu, H.K. Cheng, K.C. Liu, P.F. Chan, W.P. Dow, and C.M. Chen, J. Electrochem. Soc. 164, D457 (2017).

    Article  Google Scholar 

  21. 21.

    Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen, D. Henderson, E. Cotts, and N. Dimitrov, J. Appl. Electrochem. 38, 1695 (2008).

    Article  Google Scholar 

  22. 22.

    Y. Liu, L. Yin, S. Bliznakov, P. Kondos, P. Borgesen, D.W. Henderson, C. Parks, J. Wang, E.J. Cotts, N. Dimitrov, and I.E.E.E. Trans, Compon. Pack. Technol. 33, 127 (2010).

    Article  Google Scholar 

  23. 23.

    P.T. Lee, Y.S. Wu, P.C. Lin, C.C. Chen, W.Z. Hsieh, and C.E. Ho, Surf. Coat. Technol. 320, 559 (2017).

    Article  Google Scholar 

  24. 24.

    S.W. Chen, C.M. Chen, and W.C. Liu, J. Electron. Mater. 27, 1193 (1998).

    Article  Google Scholar 

  25. 25.

    G. Ross, V. Vuorinen, and M. Paulasto-Kröckel, J. Alloys Compd. 677, 127 (2016).

    Article  Google Scholar 

  26. 26.

    C.E. Ho, S.C. Yang, and C.R. Kao, J. Mater. Sci. Mater. Electron. 18, 155 (2007).

    Article  Google Scholar 

  27. 27.

    P.T. Lee, Y.S. Wu, C.Y. Lee, H.C. Liu, and C.E. Ho, J. Electrochem. Soc. 165, D647 (2018).

    Article  Google Scholar 

  28. 28.

    F. Wafula, Y. Liu, L. Yin, P. Borgesen, E. Cotts, and N. Dimitrov, J. Appl. Electrochem. 41, 469 (2011).

    Article  Google Scholar 

  29. 29.

    F. Wafula, L. Yin, P. Borgesen, D. Andala, and N. Dimitrov, J. Electron. Mater. 41, 1898 (2012).

    Article  Google Scholar 

  30. 30.

    Y. Yang, H. Lu, C. Yu, and Y. Li, Microelectron. Reliab. 51, 2314 (2011).

    Article  Google Scholar 

  31. 31.

    J. Yu and J.Y. Kim, Acta Mater. 56, 5514 (2008).

    Article  Google Scholar 

  32. 32.

    H. Lee and C.M. Chen, Metals 8, 388 (2018).

    Article  Google Scholar 

  33. 33.

    H.L. Hsu, H. Lee, C.W. Wang, C. Liang, and C.M. Chen, Mater. Chem. Phys. 225, 153 (2019).

    Article  Google Scholar 

  34. 34.

    Z. Zhang, C. Jiang, P. Fu, F. Cai, and N. Ma, J. Alloys Compd. 626, 118 (2015).

    Article  Google Scholar 

  35. 35.

    H. Lee, Y.A. Wang, and C.M. Chen, J. Alloys Compd. 765, 335 (2018).

    Article  Google Scholar 

  36. 36.

    H.Y. Hsiao, C.M. Liu, H.W. Lin, T.C. Liu, C.L. Lu, Y.S. Huang, C. Chen, and K.N. Tu, Science 336, 1007 (2012).

    Article  Google Scholar 

  37. 37.

    T.C. Liu, C.M. Liu, Y.S. Huang, C. Chen, and K.N. Tu, Scr. Mater. 68, 241 (2013).

    Article  Google Scholar 

  38. 38.

    O. Anderoglu, A. Misra, H. Wang, and X. Zhang, J. Appl. Phys. 103, 094322 (2008).

    Article  Google Scholar 

  39. 39.

    X. Zhang, O. Anderoglu, R.G. Hoagland, and A. Misra, JOM 60, 75 (2008).

    Article  Google Scholar 

  40. 40.

    D. Xu, V. Sriram, V. Ozolins, J.M. Yang, K.N. Tu, G.R. Stafford, C. Beauchamp, I. Zienert, H. Geisler, P. Hofmann, and E. Zschech, Microelectron. Eng. 85, 2155 (2008).

    Article  Google Scholar 

Download references


This work was financially supported by the “Innovation and Development Center of Sustainable Agriculture” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. This work was also financially supported by the Ministry of Science and Technology of Taiwan through Grant No. MOST-106-2221-E-005-066-MY3. The authors also thank the Lin Trading Co., Ltd. in Taiwan for kindly offering the 3D optical profiler for the topographical examination of the as-electroplated Cu layers.

Author information



Corresponding author

Correspondence to Chih-Ming Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsai, S., Chiang, P., Liu, C. et al. Suppression of Void Formation at Sn/Cu Joint Due to Twin Formation in Cu Electrodeposit. JOM 71, 3012–3022 (2019).

Download citation