Advertisement

JOM

, Volume 71, Issue 9, pp 2998–3011 | Cite as

Creep Behaviors Along Characteristic Crystal Orientations of Sn and Sn-1.8Ag by Using Nanoindentation

  • P. J. Chiang
  • J. Y. Wu
  • H. Y. Yu
  • C. R. KaoEmail author
Advanced Electronic Interconnection
  • 120 Downloads

Abstract

The creep mechanisms of Sn and Sn-1.8Ag along specific orientations are investigated by the constant-strain-rate nanoindentation method. Due to the anisotropy of Sn, the mechanical behaviors could be very different along different crystal orientations. For microelectronic applications, Ag is often added to Sn to increase its strength. Data from creep test show that Ag addition increases the stress exponent by 3, which indicates that the rupture time could be extended by Ag addition. Moreover, the creep rate of Sn (100) grain is lower than that of Sn (001) grain in a low stress regime, namely, that [100] in Sn would have better creep resistance for usual applications. After indentation, transmission electron images of Sn samples show that the slip systems are \( (1\bar{1}0) \)\( [11\bar{1}] \) in (100) grain and (101) \( [1\bar{1}\bar{1}] \) in (001) grain. Lastly, Sn-1.8Ag has better performance along [100] in creep resistance due to greater hindrance of Ag atoms on dislocation motion and its critical threshold stress.

Notes

Acknowledgements

We gratefully acknowledge the financial supports of the Ministry of Science and Technology of Taiwan (107-2221-E-002-014-MY3) and National Taiwan University (NTU-CC-108L892401). This work was also supported by the “Advanced Research Center for Green Materials Science and Technology” from The Featured Area Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (108L9006) and the Ministry of Science and Technology in Taiwan (MOST 108-3017-F-002-002).

References

  1. 1.
    D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, C.M. Kumar, A. Prasad, B.W. Grimsley, and H.B. Tejada, Mater. Sci. Eng. A 460, 595 (2007).Google Scholar
  2. 2.
    M.D. Mathew, H. Yang, S. Movva, and K.L. Murty, Metall. Mater. Trans. A 36, 99 (2005).Google Scholar
  3. 3.
    Q.K. Zhang, F.Q. Hu, Z.L. Song, and Z.F. Zhang, Mater. Sci. Eng. A 701, 187 (2017).Google Scholar
  4. 4.
    E. Teatum, K. Gschneidner, J. Waber, and W.B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (New York: Wiley, 1972).Google Scholar
  5. 5.
    A.U. Telang and T.R. Bieler, JOM 57, 44 (2005).Google Scholar
  6. 6.
    T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, and B. Nandagopal. IEEE Trans, Comp. Packag. Technol. 31, 370 (2008).Google Scholar
  7. 7.
    M.L. Huang, L. Wang, and C.M.L. Wu, J. Mater. Res. 17, 2897 (2002).Google Scholar
  8. 8.
    N. Wade, K. Wu, J. Kunii, S. Yamada, and K. Miyahara, J. Electron. Mater. 30, 1228 (2001).Google Scholar
  9. 9.
    S. Devaki Rani and G.S. Murthy, Mater. Sci. Technol. 20, 403 (2004).Google Scholar
  10. 10.
    H.G. Song, J.W. Morris Jr, and F. Hua, Mater. Trans. 43, 1847 (2002).Google Scholar
  11. 11.
    R. Mahmudi, A.R. Geranmayeh, S.R. Mahmoodi, and A. Khalatbari, J. Mater. Sci. 18, 1071 (2007).Google Scholar
  12. 12.
    C.H. Raeder, L.E. Felton, V.A. Tanzi, and D.B. Knorr, J. Electron. Mater. 23, 611 (1994).Google Scholar
  13. 13.
    J. Zhao, L. Qi, X.M. Wang, and L. Wang, J. Alloys Comp. 375, 196 (2004).Google Scholar
  14. 14.
    D. Witkin, J. Electron. Mater. 41, 190 (2012).Google Scholar
  15. 15.
    J.E. Breen and J. Weertman, JOM 7, 1230 (1955).Google Scholar
  16. 16.
    J. Weertman and J.E. Breen, J. Appl. Phys. 27, 1189 (1956).Google Scholar
  17. 17.
    P. Adeva, G. Caruana, O.A. Ruano, and M. Torralba, Mater. Sci. Eng. A 194, 17 (1995).Google Scholar
  18. 18.
    N. Hamada, M. Hamada, T. Uesugi, Y. Takigawa, and K. Higashi, Mater. Trans. 51, 1747 (2010).Google Scholar
  19. 19.
    G. Zhao and F. Yang, Mater. Sci. Eng. A 591, 97 (2014).Google Scholar
  20. 20.
    C. Park, X. Long, S. Haberman, S. Ma, I. Dutta, R. Mahajan, and S.G. Jadhav, J. Mater. Sci. 42, 5182 (2007).Google Scholar
  21. 21.
    S.N.G. Chu and J.C.M. Li, Mater. Sci. Eng. 39, 1 (1979).Google Scholar
  22. 22.
    M.J. Mayo and W.D. Nix, Acta Metall. 36, 2183 (1988).Google Scholar
  23. 23.
    M. Fujiwara and M. Otsuka, Mater. Sci. Eng. A 319, 929 (2001).Google Scholar
  24. 24.
    L. Shen, W.C.D. Cheong, Y.L. Foo, and Z. Chen, Mater. Sci. Eng. A 532, 505 (2012).Google Scholar
  25. 25.
    I. Shohji, T. Yoshida, T. Takahashi, and S. Hioki, Mater. Sci. Eng. A 366, 50 (2004).Google Scholar
  26. 26.
    C.K. Lin and D.Y. Chu, J. Mater. Sci. 16, 355 (2005).Google Scholar
  27. 27.
    I. Dutta, C. Park, and S. Choi, Mater. Sci. Eng. A 379, 401 (2004).Google Scholar
  28. 28.
    F. Yang and J.C.M. Li, J. Mater. Sci. 18, 191 (2007).Google Scholar
  29. 29.
    E. Schmid and W. Boas, Plasticity (London: Chapman-Hall, 1968).Google Scholar
  30. 30.
    H. Mark and M. Polanyi, Z. Phys. A Hadrons Nucl. 18, 75 (1923).Google Scholar
  31. 31.
    J. Obinata and E. Schmid, Z. Phys. A Hadrons Nucl. 82, 224 (1933).Google Scholar
  32. 32.
    G.I. Kirichenko and V.P. Soldatov, Fiz. Met. Metalloved. 54, 560 (1982).Google Scholar
  33. 33.
    K. Ojima and T. Hirokawa, Jpn. J. Appl. Phys. 22, 46 (1983).Google Scholar
  34. 34.
    R. Fiedler and A.R. Lang, J. Mater. Sci. 7, 531 (1972).Google Scholar
  35. 35.
    R. Fiedler and I. Vagera, Physica Status Solidi (a) 32, 419 (1975).Google Scholar
  36. 36.
    A.N. Stroh, Philos. Mag. 3, 625 (1958).MathSciNetGoogle Scholar
  37. 37.
    B. Düzgün and I. Aytaş, Jpn. J. Appl. Phys. 32, 3214 (1993).Google Scholar
  38. 38.
    K. Honda, Jpn. J. Appl. Phys. 17, 33 (1978).Google Scholar
  39. 39.
    K. Honda, Jpn. J. Appl. Phys. 18, 215 (1979).Google Scholar
  40. 40.
    K. Honda, Jpn. J. Appl. Phys. 26, 637 (1987).Google Scholar
  41. 41.
    M. Nagasaka, Jpn. J. Appl. Phys. 28, 446 (1989).Google Scholar
  42. 42.
    L.P. Lehman, Y. Xing, T.R. Bieler, and E.J. Cotts, Acta Mater. 58, 3546 (2010).Google Scholar
  43. 43.
    T. Chen and I. Dutta, J. Electron. Mater. 37, 347 (2008).Google Scholar
  44. 44.
    M. Kerr and N. Chawla, Acta Mater. 52, 4527 (2004).Google Scholar
  45. 45.
    L.J. Yu, H.W. Yen, J.Y. Wu, J.J. Yu, and C.R. Kao, Mater. Sci. Eng. A 685, 123 (2017).Google Scholar
  46. 46.
    R. Peierls, Proc. Phys. Soc. 52, 34 (1940).Google Scholar
  47. 47.
    F.R.N. Nabarro, Proc. Phys. Soc. 59, 256 (1947).MathSciNetGoogle Scholar
  48. 48.
    F. Vnuk, M.H. Ainsley, and R.W. Smith, J. Mater. Sci. 16, 1171 (1981).Google Scholar
  49. 49.
    G.R. Love, Acta Metall. 12, 731 (1964).Google Scholar
  50. 50.
    J. Yu, D.K. Joo, and S.W. Shin, Acta Mater. 50, 4315 (2002).Google Scholar
  51. 51.
    B.F. Dyson, J. Appl. Phys. 37, 2375 (1966).Google Scholar
  52. 52.
    W.F. Gale and T.C. Totemeier, Smithells Metals Reference Book (New York, NY: Elsevier, 2003).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Taiwan UniversityTaipeiTaiwan
  2. 2.Advanced Research Center for Green Materials Science and TechnologyNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations