Skip to main content
Log in

Hot Deformation Characterization of Homogenized Mg-Gd-Y-Zn-Zr Alloy During Isothermal Compression

  • Microstructure Evolution During Deformation Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The article investigates the hot deformation behavior of a homogenized Mg-13Gd-4Y-2Zn-0.6Zr (GWZK1342) alloy based on isothermal compression tests. The hot deformation characterization of the GWZK1342 alloy was investigated through the work-hardening rate θ and the inflection point of ln θ − ε curves; thus, the critical strain model was established. Furthermore, the hot deformation map was formulated based on the critical strain, steady strain and variation of power dissipation at different deformation parameters. The optimum parameters can be determined as the process parameters corresponding to the value of ln Z < 40, and the dynamic recrystallization (DRX) predominately operates to accommodate plastic deformation. The kink mechanism of the long period-stacking ordered (LPSO) phase predominately operates as ln Z exceeds 43. The broken lamellar 14H-LPSO phase can facilitate continuous DRX because of the reduced inhibition effect on lattice rotation and promote discontinuous DRX nucleation through a particle-stimulated nucleation (PSN) mechanism as ln Z is < 40.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.Q. Wang, R.C. Wang, Y. Feng, M. Deng, and N.G. Wang, JOM 69, 2467 (2017).

    Article  Google Scholar 

  2. F. Feng, S.Y. Huang, Z.H. Meng, J.H. Hu, Y. Lei, and M.C. Zhou, et al., Mater. Des. 57, 10 (2014).

    Article  Google Scholar 

  3. W.W. Li, W. Liang, H.X. Wang, and H.W. Guo, JOM 69, 2297 (2017).

    Article  Google Scholar 

  4. Z.W. Cai, F.X. Chen, and J.Q. Guo, J. Alloy. Compd. 648, 215 (2015).

    Article  Google Scholar 

  5. H. Mirzadeh, Mech. Mater. 77, 80 (2014).

    Article  Google Scholar 

  6. P. Maier, R. Peters, C. Mendis, S. Muller, and N. Hort, JOM 68, 1183 (2016).

    Article  Google Scholar 

  7. J. Qiao, F.B. Bian, M. He, and Y. Wang, Trans. Nonferrous Met. Soc. China 23, 2857 (2013).

    Article  Google Scholar 

  8. A. Staroselsky and L. Anand, Int. J. Plast. 19, 1843 (2003).

    Article  Google Scholar 

  9. J.C. Li, Z.L. He, P.H. Fu, Y.J. Wu, L.M. Peng, and W.J. Din, Mater. Sci. Eng. A 651, 745 (2016).

    Article  Google Scholar 

  10. J.C. Yu, Z. Liu, Y. Dong, and Z. Wang, J. Magn. Alloy 3, 134 (2015).

    Article  Google Scholar 

  11. Q.Z. Liu, X.F. Ding, Y.P. Liu, and X.J. Wei, J. Alloys Compd. 690, 961 (2017).

    Article  Google Scholar 

  12. R. Alizadeh, R. Mahmudi, P.H.R. Pereira, Y. Huang, and T.G. Langdon, Mater. Sci. Eng. A 682, 577 (2017).

    Article  Google Scholar 

  13. E. Onorbe, G. Garces, P. Perez, and P. Adeva, J. Mater. Sci., 47,1085 (2012).

  14. K.Hagihara, A.Kinoshita, Y.Sugino, M.Yamasaki, Y. Kawamura, H.Y. Yasuda, and Y. Umakoshi, Acta. Metall, 58, 6282 (2010).

  15. K. Hagihara, M. Honnami, R. Matsumoto, Mater. Trans., 61, 2065 (2013).

  16. M. Yamasaki, K. Hagihara, S. Inoue, J.P. Hadorn, and Y. Kawamura, Acta Metall, 61, 2065 (2013).

  17. Z.R. Zhang, X.Y. Yang, Z.Y. Xiao, J. Wang, D.X. Zhang, C.M. Liu, and T. Sakai, Mater. Des. 97, 25 (2016).

    Article  Google Scholar 

  18. H.C. Xiao, S.N. Jiang, B. Tang, W.H. Hao, Y.H. Gao, Z.Y. Chen, and C.M. Liu, Mater. Sci. Eng. A, 628, 311(2015).

  19. C. Xu, T. Nakata, X.G. Qiao, M.Y. Zheng, K. Wu, and S. Kamado, Sci. Rep. 7, 40846 (2017).

    Article  Google Scholar 

  20. X.J. Zhou, C.M. Liu, Y.H. Gao, S.N. Jiang, X.Z. Han, and Z.Y. Lu, Metall. Mater. Trans. A 48, 3060 (2017).

    Article  Google Scholar 

  21. X.S. Xia, Q. Chen, J.P. Li, D.Y. Shu, C.K. Hu, S.H. Huang, and Z.D. Zhao, J. Alloys Compd. 610, 203 (2014).

    Article  Google Scholar 

  22. S.N. Jiang, C.M. Liu, and H.Z. Li, et al., J. Cent. South Univ. Sci. Technol 35, 935 (2004).

    Google Scholar 

  23. X.J. Zhou, C.M. Liu, Y.H. Gao, S.N. Jiang, W.H. Liu, and L.W. Lu, J. Alloys Compd. 724, 528 (2017).

    Article  Google Scholar 

  24. C.M. Sellars and W.J. McTegart, Acta Metall. 14, 1136 (1966).

    Article  Google Scholar 

  25. L. Chen, G.Q. Zhao, and J.Q. Yu, Mater. Des. 74, 25 (2015).

    Article  Google Scholar 

  26. T.Y. Kwak, H.K. Lim, and W.J. Kim, Mater. Des. 644, 645 (2015).

    Google Scholar 

  27. M. Sarebanzadeh, R. Mahmudi, and R. Roumina, Mater. Sci. Eng. A 637, 155 (2015).

    Article  Google Scholar 

  28. Y.H. Kong, P.P. Chang, Q. Li, L.X. Xie, and S.G. Zhu, J. Alloys Compd. 622, 738 (2015).

    Article  Google Scholar 

  29. Z.H. Du, S.S. Jiang, and K.F. Zhang, J. Alloys Compd. 86, 464 (2015).

    Google Scholar 

  30. S.W. Zeng, A.M. Zhao, H.T. Jiang, and Y.S. Ren, J. Alloy. Compd. 698, 786 (2017).

    Article  Google Scholar 

  31. C.M. Sellars and J.A. Whiteman, Metal. Sci. I3, 187 (1979).

    Article  Google Scholar 

  32. J.M. Yu, Z.M. Zhang, Q. Wang, X.Y. Yin, J.Y. Cui, and H.N. Qi, J. Alloys Compd. 704, 382 (2017).

    Article  Google Scholar 

  33. Y.V.R.K. Prasad and S. Sasidhara, ASM International (OH: Materials Park, 1997).

    Google Scholar 

  34. Y.V.R.K. Prasad, H.J. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, L.A. Lark, et al. Metall. Mater. Trans. A, 15A, 1883 (1984).

  35. W.W. Peng, W.D. Zeng, Q.J. W, H.Q. Yu, Mater. Sci. Eng. A, 571,116 (2013).

  36. X.S. Xia, Q. Chen, K. Zhang, Z.D. Zhao, M.L. Ma, and X.G. Li, et al, Mater. Sci. Eng. A, 587, 283(2013).

  37. W.C. Xu, X.Z. Jin, D.B. Shan, and B.X. Chai, J. Alloys Compd. 692, 309 (2017).

    Article  Google Scholar 

  38. Y.Y. Zong, D.S. Wen, Z.Y. Liu, and D.B. Shan, Mater. Des. 91, 321 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant Nos. 51875127 and 51775137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bugang Teng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Teng, B. & Xu, W. Hot Deformation Characterization of Homogenized Mg-Gd-Y-Zn-Zr Alloy During Isothermal Compression. JOM 71, 4059–4070 (2019). https://doi.org/10.1007/s11837-019-03556-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03556-y

Navigation