Skip to main content
Log in

Parametrically Homogenized Constitutive Models (PHCMs) for Multi-scale Predictions of Fatigue Crack Nucleation in Titanium Alloys

  • Multiscale Computational Strategies for Heterogeneous Materials with Defects: Coupling Modeling with Experiments and Uncertainty Quantification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This paper develops a bottom-up and top-down multi-scale modeling framework for predicting fatigue crack nucleation in structures of titanium alloys, e.g., Ti-7Al. A parametrically homogenized constitutive model (PHCM) and a parametrically homogenized crack nucleation model (PHCNM) are developed from computational homogenization of crystal plasticity finite element simulation results performed on microstructural statistically equivalent RVEs. Bayesian inference and machine-learning methods are employed to derive microstructure-dependent functional forms of PHCM and PHCNM coefficients. The PHCM is augmented with uncertainty quantification to account for model reduction errors and microstructural uncertainty. Macroscopic finite element models for Ti-7Al test specimens are created by matching correlation functions of microtexture in electron back-scatter diffraction scans. Nucleation hot-spots are identified by PHCNM in macroscopic simulations of stress-controlled dwell loading, then top–down microscopic simulations are performed to probe into the crack nucleation process. The computed distributions of nucleation lives and locations follow experimentally observed characteristics of the dwell effect in Ti alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CPFE:

Crystal plasticity finite element

EBSD:

Electron back-scatter diffraction

ED/TD:

Extrusion and transverse directions

MTR:

Micro-textured region

PHCM:

Parametrically homogenized constitutive model

PHCNM:

Parametrically homogenized crack nucleation model

SERVE:

Statistically equivalent representative volume elements

UQ/UP:

Uncertainty quantification/propagation

WATMUS:

Wavelet-induced accelerated multi-timescale integration algorithm

Y.S.:

Macroscopic yield strength

References

  1. V. Sinha, J.E. Spowart, M.J. Mills, and J.C. Williams, Metall. Mater. Trans. A 37(5), 1507 (2006).

    Article  Google Scholar 

  2. P.O. Tympel, T.C. Lindley, E.A. Saunders, M. Dixon, and D. Dye, in Proceedindgs of 13th World Conference on Titan (Wiley, Hoboken, NJ, 2016), pp. 985–991.

  3. A.L. Pilchak, A. Hutson, W.J. Porter, D. Buchanan, and R. John, in Proceedings of 13th World Conference on Titan (Wiley, Hoboken, NJ, 2016), pp. 993–998.

  4. D. Ozturk, A. Pilchak, and S. Ghosh, Scr. Mater. 127, 15 (2017).

    Article  Google Scholar 

  5. W. Evans and M. Bache, Int. J. Fatigue 16(7), 443 (1994).

    Article  Google Scholar 

  6. M.E. Kassner, Y. Kosaka, and J.S. Hall, Metall. Mater. Trans. A 30(9), 2383 (1999).

    Article  Google Scholar 

  7. V. Doquet and V. De Greef, Int. J. Fatigue 38, 118 (2012).

    Article  Google Scholar 

  8. V. Sinha, M.J. Mills, and J.C. Williams, Metall. Mater. Trans. A 37(6), 2015 (2006).

    Article  Google Scholar 

  9. M. Anahid, M.K. Samal, and S. Ghosh, J. Mech. Phys. Solids 59(10), 2157 (2011).

    Article  Google Scholar 

  10. V. Hasija, S. Ghosh, M.J. Mills, and D.S. Joseph, Acta Mater. 51(15), 4533 (2003).

    Article  Google Scholar 

  11. J.C. Williams, R.G. Baggerly, and N.E. Paton, Metall. Mater. Trans. A 33(3), 837 (2002).

    Article  Google Scholar 

  12. A.L. Pilchak and J.C. Williams, Metall. Mater. Trans. A 42(4), 1000 (2011).

    Article  Google Scholar 

  13. M. Cuddihy, A. Stapleton, S. Williams, and F. Dunne, Int. J. Fatigue 97, 177 (2017).

    Article  Google Scholar 

  14. X. Zhang, D.J. O’Brien, and S. Ghosh, Comput. Methods Appl. Mech. Eng. 346, 456 (2019).

    Article  Google Scholar 

  15. S. Kotha, D. Ozturk, and S. Ghosh, Int. J. Plast. (2019). https://doi.org/10.1016/j.ijplas.2019.05.008

    Google Scholar 

  16. S. Kotha, D. Ozturk, and S. Ghosh, Int. J. Plast. (2019). https://doi.org/10.1016/j.ijplas.2019.05.007

    Google Scholar 

  17. D. Ozturk, A. Shahba, and S. Ghosh, Fatigue Fract. Eng. Mater. Struct. 39(6), 752 (2016).

    Article  Google Scholar 

  18. A.L. Pilchak, Scr. Mater. 74, 68 (2014).

    Article  Google Scholar 

  19. M.A. Groeber and M.A. Jackson, Integr. Mater. Manuf. Innov. 3(1), 5 (2014).

    Article  Google Scholar 

  20. S. Swaminathan, S. Ghosh, and N.J. Pagano, J. Comp. Mater. 40(7), 583 (2006).

    Article  Google Scholar 

  21. A. Bagri, G. Weber, J.C. Stinville, W. Lenthe, T. Pollock, C. Woodward, and S. Ghosh, Metall. Mater. Trans. A 49(11), 5727 (2018).

    Article  Google Scholar 

  22. M. Pinz, G. Weber, W. Lenthe, M. Uchic, T. Pollock, and S. Ghosh, Acta Mater. 157, 245 (2018).

    Article  Google Scholar 

  23. X. Tu, A. Shahba, J. Shen, and S. Ghosh, Int. J. Plast. 115, 268 (2019).

    Article  Google Scholar 

  24. D. Ozturk, S. Kotha, A.L. Pilchak, and S. Ghosh, J. Mech. Phys. Solids 128, 181 (2019). https://doi.org/10.1016/j.jmps.2019.04.009.

    Article  Google Scholar 

  25. D. Deka, D.S. Joseph, S. Ghosh, and M.J. Mills, Metall. Mater. Trans. A 37(5), 1371 (2006).

    Article  Google Scholar 

  26. G. Venkatramani, S. Ghosh, and M. Mills, Acta Mater. 55(11), 3971 (2007).

    Article  Google Scholar 

  27. D.C. Pagan, P.A. Shade, N.R. Barton, J.S. Park, P. Kenesei, D.B. Menasche, and J.V. Bernier, Acta Mater. 128, 406 (2017).

    Article  Google Scholar 

  28. S. Ghosh and P. Chakraborty, Int. J. Fatigue 48, 231 (2013).

    Article  Google Scholar 

  29. S. Keshavarz and S. Ghosh, Int. J. Solids Struct. 55, 17 (2015).

    Article  Google Scholar 

  30. O. Cazacu, B. Plunkett, and F. Barlat, Int. J. Plast. 22(7), 1171 (2006).

    Article  Google Scholar 

  31. A. Karafillis and M. Boyce, J. Mech. Phys. Solids 41(12), 1859 (1993).

    Article  Google Scholar 

  32. M. Schmidt and H. Lipson, Science (80-. ). 324(5923), 81 (2009)

    Article  Google Scholar 

  33. E. Voce, Metallurgica 51, 219 (1955).

    Google Scholar 

  34. S. ABAQUS/Standard, Dassault Systemes. Dassault systemes, simulia (2014). URL https://www.3ds.com/products-services/simulia/products/abaqus/.

  35. D. Barber, in Bayesian Reasoning and Machine Learning (Cambridge: Cambridge University Press, 2012), pp. 392–411.

    MATH  Google Scholar 

  36. J.O. Berger, Statistical Decision Theory and Bayesian Analysis, 2nd edn. (New York: Springer, 1985).

    Book  MATH  Google Scholar 

  37. L. Isserlis, Biometrika 12(1–2), 134 (1918).

    Article  Google Scholar 

  38. D.S. Joseph, P. Chakraborty, and S. Ghosh, Comput. Methods Appl. Mech. Eng. 199(33–36), 2177 (2010).

    Article  Google Scholar 

  39. L. Toubal, P. Bocher, and A. Moreau, Int. J. Fatigue 31(3), 601 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported through a subcontract to JHU (sub-recipient) from the Ohio State University (main recipient) through a sub-Award No. 60038238 from an AFRL Grant No. FA8650-13-2-2347 as a part of the AFRL Collaborative Center of Structural Sciences. The program managers of this grant are Dr. B. Smarslok and Dr. R. Chona, and the PI is Prof. J. McNamara. This support to JHU is gratefully acknowledged. Computer use of the Hopkins High Performance Computing facilities is gratefully acknowledged. Adam Pilchak gratefully acknowledges the support of AFOSR Task No. 12RX01COR, with program manager Dr. A. Sayir.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnath Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, D., Kotha, S., Pilchak, A.L. et al. Parametrically Homogenized Constitutive Models (PHCMs) for Multi-scale Predictions of Fatigue Crack Nucleation in Titanium Alloys. JOM 71, 2657–2670 (2019). https://doi.org/10.1007/s11837-019-03554-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03554-0

Navigation