Advertisement

JOM

, Volume 71, Issue 9, pp 3241–3252 | Cite as

Effects of Recycled Powder on Solidification Defects, Microstructure, and Corrosion Properties of DMLS Fabricated AlSi10Mg

  • M. RafieazadEmail author
  • A. Chatterjee
  • A. M. Nasiri
Solidification Defects in Additive Manufactured Materials
  • 154 Downloads

Abstract

This study examines the impacts of using recycled powder on solidification defects, microstructures, and the resultant corrosion properties of direct metal laser sintered AlSi10Mg alloy. Microstructural analysis confirmed that using recycled powder in the fabrication of AlSi10Mg leads to (1) an increased volume fraction of internal porosities and solidification micro-cracks, and (2) more coarsening of the interdendritic eutectic-Si network particularly along the melt pool boundaries, which were correlated to the larger size and irregular shape of the recycled powders compared to the virgin powders, leading to the reduced thermal conductivity of the recycled powders. To investigate the impacts of the above-mentioned microstructural changes on the corrosion performance of the alloy, anodic polarization testing and electrochemical impedance spectroscopy in aerated 3.5 wt.% NaCl solution were performed. The results confirmed a slight degradation of the corrosion properties of the recycled-powder fabricated samples, ascribed to further coarsening of Si-network along their melt pool boundaries.

Notes

Acknowledgements

The authors wish to acknowledge the support of Natural Sciences and Engineering Research Council of Canada (NSERC) [Grant Number RGPIN-2017-04368] for sponsoring this work.

References

  1. 1.
    H. Asgari, C. Baxter, K. Hosseinkhani, and M. Mohammadi, Mater. Sci. Eng. A 707, 148 (2017).CrossRefGoogle Scholar
  2. 2.
    E.O. Olakanmi, J. Mater. Process. Technol. 213, 1387 (2013).CrossRefGoogle Scholar
  3. 3.
    W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).CrossRefGoogle Scholar
  4. 4.
    N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N.M. Everitt, J. Mater. Process. Technol. 230, 88 (2016).CrossRefGoogle Scholar
  5. 5.
    A.H. Maamoun, M. Elbestawi, G.K. Dosbaeva, and S.C. Veldhuis, Addit. Manuf. 21, 234 (2018).CrossRefGoogle Scholar
  6. 6.
    L.C. Ardila, F. Garciandia, J.B. González-Díaz, P. Álvarez, A. Echeverria, M.M. Petite, R. Deffley, and J. Ochoa, Phys. Procedia 56, 99 (2014).CrossRefGoogle Scholar
  7. 7.
    G. Nichols, S. Byard, M.J. Bloxham, J. Botterill, N.J. Dawson, A. Dennis, V. Diart, N.C. North, and J.D. Sherwood, J. Pharm. Sci. 91, 2103 (2002).CrossRefGoogle Scholar
  8. 8.
    A. Simchi, Mater. Sci. Eng. A 428, 148 (2006).CrossRefGoogle Scholar
  9. 9.
    K. Abd-Elghany and D.L. Bourell, Rapid Prototyp. J. 18, 420 (2012).CrossRefGoogle Scholar
  10. 10.
    R.I. Revilla, J. Liang, S. Godet, and I. De Graeve, J. Electrochem. Soc. 164, C27 (2017).CrossRefGoogle Scholar
  11. 11.
    M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, E.P. Ambrosio, F. Calignano, D. Manfredi, M. Pavese, and P. Fino, Electrochim. Acta 206, 346 (2016).CrossRefGoogle Scholar
  12. 12.
    P. Fathi, M. Mohammadi, X. Duan, and A.M. Nasiri, J. Mater. Process. Technol. 259, 1 (2018).CrossRefGoogle Scholar
  13. 13.
    M. Rafieazad, M. Mohammadi, and A. Nasiri, Addit. Manuf. 28, 107 (2019).CrossRefGoogle Scholar
  14. 14.
    P. Fathi, M. Mohammadi, X. Duan, and A. Nasiri, JOM 1, 1 (2019).Google Scholar
  15. 15.
    M. Tang, P.C. Pistorius, S. Narra, and J.L. Beuth, JOM 68, 960 (2016).CrossRefGoogle Scholar
  16. 16.
    X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang, and T.B. Sercombe, Acta Mater. 95, 74 (2015).CrossRefGoogle Scholar
  17. 17.
    T. Rubben, R.I. Revilla, and I. De Graeve, J. Electrochem. Soc. 166, C42 (2019).CrossRefGoogle Scholar
  18. 18.
    B. Wu, Z. Pan, S. Li, D. Cuiuri, D. Ding, and H. Li, Corros. Sci. 137, 176 (2018).CrossRefGoogle Scholar
  19. 19.
    M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, D. Manfredi, P. Fino, S. Biamino, and C. Badini, J. Mater. Process. Technol. 231, 326 (2016).CrossRefGoogle Scholar
  20. 20.
    M. Cabrini, S. Lorenzi, T. Pastore, C. Testa, D. Manfredi, G. Cattano, and F. Calignano, Surf. Interface Anal. (n.d.).Google Scholar
  21. 21.
    T. Rubben, R.I. Revilla, and I. De Graeve, Corros. Sci 147, 406 (2018).CrossRefGoogle Scholar
  22. 22.
    R.I. Revilla, D. Verkens, G. Couturiaux, L. Malet, L. Thijs, S. Godet, and I. De Graeve, J. Electrochem. Soc. 164, C1027 (2017).CrossRefGoogle Scholar
  23. 23.
    M. Cabrini, F. Calignano, P. Fino, S. Lorenzi, M. Lorusso, D. Manfredi, C. Testa, and T. Pastore, Materials 11, 1051 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Faculty of Engineering and Applied ScienceMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations