Skip to main content
Log in

Characterization of TiO2-Reinforced Bronze Matrix Composite Prepared by SPS and PSR Densification Methods

  • Characterization of Advanced Sintering Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Bronze/TiO2 composites with 5 wt.% and 20 wt.% TiO2 were prepared by mechanical milling and densification of the corresponding powder mixtures. The milled powders were densified by two different methods. In the first process, the powders were pressureless sintered in liquid state at three different temperatures. The observations showed that just the samples with 5 wt.% TiO2 which were sintered at 900°C were densified by liquid phase sintering and the other samples were not consolidated via the applied sintering conditions. The sintered compacts were cold-repressed for more densification under 100 MPa. In the second method, the milled powders were consolidated via spark plasma sintering without any prepressing process. The microstructural evaluations showed a fine dispersion of TiO2 within the bronze matrix of the spark plasma sintered samples. The highest relative density (96%), hardness (320 Vickers) and flexural strength (365 MPa) corresponded to the spark plasma sintered sample with 20 wt.% TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Chawla and K.K. Chawla, Metal Matrix Composites, 2nd ed. (New York: Springer, 2013), pp. 325–328.

    Book  Google Scholar 

  2. Krishnan K. Chawla, Composite Materials Science and Engineering, 3rd ed. (New York: Springer, 2012), pp. 239–243.

    Google Scholar 

  3. L.L. Dong, M. Ahangarkani, W.G. Chen, and Y.S. Zhang, Int. J. Refract. Metals Hard Mater. 75, 30 (2018).

    Article  Google Scholar 

  4. C. Krüger and A. Mortensen, Mater. Sci. Eng. 585A, 396 (2013).

    Article  Google Scholar 

  5. F. Yang, W. Sun, A. Singh, and L. Bolzoni, JOM 70, 2243 (2018).

    Article  Google Scholar 

  6. S. Memari, M. Ardestani, and A. Abbasi, Arch. Civ. Mech. Eng. 18, 1013 (2018).

    Article  Google Scholar 

  7. ASM Handbook Committee, Powder Metal Technologies and Applications, ASM Handbook, vol. 7 (ASM International, 1998), pp. 2551–2562.

  8. Y. Shi, W. Chen, L. Dong, H. Li, and Y. Fu, Ceram. Int. 44, 57 (2018).

    Article  Google Scholar 

  9. P. Dong, Z. Wang, W. Wang, S. Chen, and J. Zhou, Scr. Mater. 123, 118 (2016).

    Article  Google Scholar 

  10. F.A. Costa, A.G.P. Silva, and U.U. Gomes, Powder Technol. 134, 123 (2003).

    Article  Google Scholar 

  11. E. Tekoğlu, D. Ağaoğulları, Y. Yürektürk, B. Bulut, and M.L. Öveçoğlu, Powder Technol. 340, 473 (2018).

    Article  Google Scholar 

  12. S.K. Karak, A. Patra, F. Dąbrowski, L. Ciupinski, and S. Sarkar, Mater. Charact. 136, 337 (2018).

    Article  Google Scholar 

  13. D. Davoodi, A.H. Emami, M. Tayebi, and S.K. Hosseini, Ceram. Int. 5, 5411 (2018).

    Article  Google Scholar 

  14. M. Ardestani, H. Arabi, H.R. Rezaie, and H. Razavizadeh, Int. J. Refract. Metals Hard Mater. 27, 796 (2009).

    Article  Google Scholar 

  15. Y.A. Sorkhe, H. Aghajani, and A.T. Tabrizi, Mater. Des. 58, 168 (2014).

    Article  Google Scholar 

  16. L. Dyachkova and E.E. Feldshtein, Compos. Part B 45, 239 (2013).

    Article  Google Scholar 

  17. Y. Shi, W. Chen, L. Dong, H. Li, and Y. Fu, Ceram. Int. 44, 57 (2018).

    Article  Google Scholar 

  18. Q.Z. Wang, C.X. Cui, D.M. Lu, S.J. Bu, and J. Mater, Process Tech 210, 497 (2010).

    Article  Google Scholar 

  19. A. Moghanian, F. Sharifianjazi, P. Abachi, E. Sadeghi, H. Jafarikhorami, and A. Sedghi, J. Alloys Compd. 698, 518 (2017).

    Article  Google Scholar 

  20. J. Yan, M.Q. Wang, S.G. Du, B. Wang, and X.S. Zhang, Ceram. Int. 41, 3365 (2015).

    Article  Google Scholar 

  21. G. Nageswaran, S. Natarajan, and K.R. Ramkumar, J. Alloys Compd. 768, 733 (2018).

    Article  Google Scholar 

  22. A.S. Namini, M. Azadbeh, A. Mohammadzadeh, and S. Shadpour, Trans. Indian Inst. Metals 69, 1377 (2016).

    Article  Google Scholar 

  23. E. Rahimi, M. Ardestani, M. M.Goudarzi, and A. Abbasi, Mater. Chem. Phys. 223, 805 (2019).

    Article  Google Scholar 

  24. R.M. German, Powder Metallurgy and Particulate Materials Processing (Princeton: Metal Powder Industries Federation, 2005).

    Google Scholar 

  25. W.R. Matizamhuka, J. South Afr. Inst. Min. Metall. 116, 1171 (2016).

    Article  Google Scholar 

  26. G.E. Dieter, Mechanical Metallurgy, 3rd ed. (Boston: McGraw Hill, 1986), pp. 212–220.

    Google Scholar 

  27. M. Balasubramanian, Composite Materials and Processing (Boca Raton: CRC Press, 2014), pp. 335–343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ardestani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokabi, A., Ardestani, M., Tamizifar, M. et al. Characterization of TiO2-Reinforced Bronze Matrix Composite Prepared by SPS and PSR Densification Methods. JOM 71, 2522–2530 (2019). https://doi.org/10.1007/s11837-019-03542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03542-4

Navigation