Advertisement

JOM

pp 1–8 | Cite as

Assessment of Bauxite Residue for Reclamation Purposes After Calcification–Carbonization Treatment

  • Yanxiu Wang
  • Ting-an ZhangEmail author
  • Guozhi Lv
  • Weiguang Zhang
Aluminum: Recycling and Environmental Footprint
  • 17 Downloads

Abstract

To develop a more benign materials production route and encourage reuse of bauxite residue produced in the Bayer process, this study aimed to recover the alkali and alumina fractions from bauxite residue by using a novel calcification–carbonization (C–C) method. The obtained dealkalized and dealuminized residue (C–C residue) was then remediated for reclamation to consume all secondary tailings. The C–C process greatly reduced the salinity and alkalinity of the bauxite residue by extracting up to 80% of the alkali and over 40% of the alumina. The Na content in the leachate decreased significantly from 1340 mg/L in the bauxite residue to 0.26 mg/L in the C–C residue. To evaluate the environmental effects of the newly produced residue, the original bauxite residue and the C–C residue were regarded as soil samples for direct comparison with a natural soil and a nutritional soil for remediation purposes.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51874078, U1710257, and U1202274), State Key Laboratory of Pressure Hydrometallurgical Technology of Associated Nonferrous Metal Resources (YY2016006), Shenyang Science and Technology Project (17-500-8-01, Z18-5-022), and Fundamental Research Funds for the Central Universities of China (Grant No. N162506003).

Supplementary material

11837_2019_3528_MOESM1_ESM.pdf (90 kb)
Supplementary material 1 (PDF 90 kb)

References

  1. 1.
    G.H. Li, F.Q. Gu, T. Jiang, J. Luo, B.N. Deng, and Z.W. Peng, JOM 69, 315 (2017).CrossRefGoogle Scholar
  2. 2.
    C. Klauber, M. Graefe, and G. Power, Hydrometallurgy 108, 11 (2011).CrossRefGoogle Scholar
  3. 3.
    Q.Y. Zhao, X.F. Zhu, G.Z. Lv, Z.M. Zhang, Z.N. Yin, and T.A. Zhang, JOM 68, 1711 (2016).CrossRefGoogle Scholar
  4. 4.
    X.F. Kong, Y. Guo, S.G. Xue, W. Hartley, Y.Z. Ye, and Q.Y. Cheng, J. Clean. Prod. 143, 224 (2017).CrossRefGoogle Scholar
  5. 5.
    D. Higgins, T. Curtin, and R. Courtney, Environ. Sci. Pollut. Res. 24, 8516 (2017).CrossRefGoogle Scholar
  6. 6.
    X.F. Li, Y.Z. Ye, S.G. Xue, J. Jiang, C. Wu, X.F. Kong, W. Hartley, and Y.W. Li, Trans. Nonferrous Met. Soc. China 28, 1248 (2018).CrossRefGoogle Scholar
  7. 7.
    C.S. Lv, J.W. Wang, Y.Z. Jia, H.L. Liu, and G.W. Li, J. Saf. Environ. 13, 98 (2013).Google Scholar
  8. 8.
    E. Ujaczkj, O. Klebercz, V. Feigl, M. Molnar, A. Magyar, N. Uzinger, and K. Gruiz, Period. Polytech Chem. Eng. 59, 253 (2015).CrossRefGoogle Scholar
  9. 9.
    F. Zhu, Q.Y. Cheng, S.G. Xue, C.X. Li, W. Hartley, C. Wu, and T. Tian, Land Degrad. Dev. 29, 138 (2018).CrossRefGoogle Scholar
  10. 10.
    X.F. Kong, C.X. Li, J. Jiang, L.B. Huang, W. Hartley, C. Wu, and S.G. Xue, J. Cent. South Univ. 26, 430 (2019).CrossRefGoogle Scholar
  11. 11.
    J. Huang, L. Lin, Y.J. Yu, M.Z. Lan, J.S. Zhang, D.F. Gao, X.T. Wang, and J.B. Yang, Technical and Product Evaluation of Industrial Solid Waste (Beijing: China Standard Press, 2014), p. 77.Google Scholar
  12. 12.
    B.E.H. Jones, R.J. Haynes, and I.R. Phillips, J. Environ. Manag. 95, 29 (2012).CrossRefGoogle Scholar
  13. 13.
    S.G. Xue, M. Li, J. Jiang, G.J. Millar, C.X. Li, and X.F. Kong, J. Environ. Sci. 77, 1 (2019).CrossRefGoogle Scholar
  14. 14.
    S.G. Xue, Y.J. Wu, Y.W. Li, X.F. Kong, F. Zhu, W. Hartley, X.F. Li, and Y.Z. Ye, J. Cent. South Univ. 26, 268 (2019).CrossRefGoogle Scholar
  15. 15.
    S.G. Xue, Y.Z. Ye, F. Zhu, Q.L. Wang, J. Jiang, and W. Hartley, J. Environ. Sci. 78, 276 (2019).CrossRefGoogle Scholar
  16. 16.
    R.B. Li, T.A. Zhang, Y. Liu, G.Z. Lv, and L.Q. Xie, J. Hazard. Mater. 316, 94 (2016).CrossRefGoogle Scholar
  17. 17.
    T.A. Zhang, G.Z. Lv, Y. Liu, Z.M. Zhang, X.F. Zhu, and Z.H. Dou, International Patent US15/303,408 (US patent), 2014392419 (Australian patent), 14891022.7 (European Patent).Google Scholar
  18. 18.
    G.Z. Lu, T.A. Zhang, X.F. Zhu, Y. Liu, Y.X. Wang, F.F. Guo, Q.Y. Zhao, and C.Z. Zheng, JOM 66, 1616 (2014).CrossRefGoogle Scholar
  19. 19.
    Y.X. Wang, T.A. Zhang, G.Z. Lyu, F.F. Guo, W.G. Zhang, and Y.H. Zhang, J. Clean. Prod. 188, 456 (2018).CrossRefGoogle Scholar
  20. 20.
    Y.X. Wang, T.A. Zhang, G.Z. Lv, W.G. Zhang, X.F. Zhu, and L.Q. Xie, Light Met. 2017, 61 (2017).Google Scholar
  21. 21.
    S.R. Zhao, Q.J. Bian, and Q.Y. Wang, Crystallography and Mineralogy, 2nd ed. (Beijing: High Education Press, 2011), p. 407.Google Scholar
  22. 22.
    Z. Wang, M.F. Han, Y.H. Zhang, and F.S. Zhou, Bull. Chin. Ceram. Soc. 9, 1851 (2013).Google Scholar
  23. 23.
    X.F. Kong, T. Tian, S.G. Xue, W. Hartley, L.B. Huang, C. Wu, and C.X. Li, Land Degrad. Dev. 29, 58 (2018).CrossRefGoogle Scholar
  24. 24.
    A. Gelencser, N. Kovats, B. Turoczi, A. Rostasi, A. Hoffer, K. Imre, I. Nyiro-Kosa, D. Csakberenyi-Malasics, A. Toth, A. Czitrovszky, A. Nagy, S. Nagy, A. Acs, A. Kovacs, A. Ferincz, Z. Hartyani, and M. Posfai, Environ. Sci. Technol. 45, 1608 (2011).CrossRefGoogle Scholar
  25. 25.
    D.Y. Lin and Y.H. Xie, Edaphology, 2nd ed. (Beijing: China Forestry Publishing House, 2011), p. 50.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yanxiu Wang
    • 1
    • 2
  • Ting-an Zhang
    • 1
    • 2
    Email author
  • Guozhi Lv
    • 1
    • 2
  • Weiguang Zhang
    • 1
    • 2
  1. 1.School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of EducationShenyangChina

Personalised recommendations