Skip to main content
Log in

Preparation by Ball Milling–Thermal Decomposition Method and Characterization of Reduced Graphene Oxide Decorated with Ni Nanoparticles

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nickel acetate tetrahydrate [Ni(CH3COO)2·4H2O] was used as a precursor to prepare reduced graphene oxide decorated with Ni nanoparticles (Ni-rGO) by a ball milling–thermal decomposition method. Ni-rGO was characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction analysis, Fourier-transform infrared spectroscopy, and Raman spectrometry, and the adsorption energy between Ni atom and rGO was calculated based on first-principles calculations using density functional theory. The results showed that ball milling could be used to effectively restrain the agglomeration and reduce the size of rGO, and improve the adsorption energy between Ni particles and rGO. With increase of the milling time, the nucleation sites of Ni particles increased while the size of the Ni nanoparticles decreased. The thermal decomposition products of Ni(CH3COO)2·4H2O in Ar atmosphere were Ni with a very small amount of carbides. Ni-rGO was obtained by reduction of GO, ball milling, and thermal decomposition processes, and the combination between Ni atom and rGO was via chemisorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  3. L.L. Zhang, R. Zhou, and X.S. Zhao, J. Mater. Chem. 20, 5983 (2010).

    Article  Google Scholar 

  4. H.J. Choi, S.M. Jung, J.M. Seo, D.W. Chang, L. Dai, and J.B. Baek, Nano Energy 1, 534 (2012).

    Article  Google Scholar 

  5. Y.X. Liu, X.C. Dong, and P. Chen, Chem. Soc. Rev. 41, 2283 (2012).

    Article  Google Scholar 

  6. P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).

    Article  Google Scholar 

  7. Y. Li, W. Gao, L. Ci, and C. Wang, Carbon 48, 1124 (2010).

    Article  Google Scholar 

  8. H.M. Sun, Y.X. Ye, J. Liu, Z.F. Tian, Y.Y. Cai, P.F. Li, and C.H. Liang, Chem. Commun. (2017). https://doi.org/10.1039/C7CC09361F.

    Article  Google Scholar 

  9. L.S. Schadler, S.C. Giannaris, and P.M. Ajayan, Appl. Phys. Lett. 73, 3842 (1998).

    Article  Google Scholar 

  10. A. Dahal and M. Batzill, Nanoscale 6, 2548 (2014).

    Article  Google Scholar 

  11. Y. Qiao, X.S. Wu, C.X. Ma, H. He, and C. Li, RSC Adv. 4, 21788 (2014).

    Article  Google Scholar 

  12. J. Li and C.Y. Liu, Eur. J. Inorg. Chem. 8, 1244 (2010).

    Article  Google Scholar 

  13. Z. Xu, Z. Liu, H. Sun, and C. Gao, Adv. Mater. 25, 3249 (2013).

    Article  Google Scholar 

  14. H.U. Qing-Hua, X.T. Wang, H. Chen, and Z.F. Wang, N. Carbon Mater. 27, 35 (2012).

    Article  Google Scholar 

  15. W.Z. Gong, C.M. Chen, J.G. Gao, Q.Q. Kong, M.G. Yang, M.Z. Wang, L. Liu, and Y.G. Yang, N. Carbon Mater. 85, 446 (2014).

    Article  Google Scholar 

  16. J. Eriksson, D. Puglisi, Y.H. Kang, R. Yakimova, and A.L. Spetz, Physica B (Amsterdam) 439, 105 (2014).

    Article  Google Scholar 

  17. Y. Lin, K.A. Watson, M.J. Fallbach, S. Ghose, J.G.S. Jr, D.M. Delozier, W. Cao, R.E. Crooks, and J.W. Connell, ACS Nano 3, 871 (2009).

    Article  Google Scholar 

  18. C. Wen, M. Shao, S. Zhuo, Z. Lin, and Z. Kang, Mater. Chem. Phys. 135, 780 (2012).

    Article  Google Scholar 

  19. Q. Wu, M. Jiang, X. Zhang, J. Cai, and S. Lin, J. Mater. Sci. 2, 6656 (2017).

    Article  Google Scholar 

  20. I.Y. Jeon, H.J. Choi, C. Min, J.M. Seo, S.M. Jung, M.J. Kim, S. Zhang, L.P. Zhang, Z.H. Xia, L.M. Dai, N. Park, and J.B. Baek, Sci. Rep. 3, 1810 (2013).

    Article  Google Scholar 

  21. C.T. Mi, G.P. Liu, J.J. Wang, X.L. Guo, S.X. Wu, and J. Yu, Acta Phys. Chim. Sin. 7, 1230 (2014).

    Google Scholar 

  22. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  23. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, and I. Bieloshapka, J. Electron Spectrosc. Relat. Phenom. 195, 145 (2014).

    Article  Google Scholar 

  24. J. Qi, W. Zhang, R.J. Xiang, K.Q. Liu, H.Y. Wang, M.X. Chen, Y.Z. Han, and R. Cao, Adv. Sci. 2, 1500199 (2015).

    Article  Google Scholar 

  25. J.P. Hu, Y.J. Huang, J.Y. Dong, and Y.X. Wang, Chem. Res. Chin. Univ. 34, 002077 (2013).

    Google Scholar 

  26. X.Y. Yang, X.B. Wang, J. Li, L. Wan, and J.C. Wang, Chem. Res. Chin. Univ. 33, 1902 (2012).

    Google Scholar 

  27. F. Liu, X.B. Zhang, J.P. Cheng, J.P. Tu, F.Z. Kong, W.Z. Huang, and C.P. Chen, Carbon 41, 2527 (2003).

    Article  Google Scholar 

  28. N. Pierard, A. Fonseca, Z. Konya, I. Willems, G.V. Tendeloo, and J.B. Nagy, Chem. Phys. Lett. 335, 1 (2015).

    Article  Google Scholar 

  29. I.Y. Jeon, S. Zhang, L.P. Zhang, H.J. Choi, J.M. Seo, Z.H. Xia, L.M. Dai, and J.B. Baek, Adv. Mater. 25, 6138 (2013).

    Article  Google Scholar 

  30. I.Y. Jeon, H.J. Choi, S.M. Jung, J.M. Seo, M.J. Kim, L.M. Dai, and J.B. Baek, J. Am. Chem. Soc. 135, 1386 (2013).

    Article  Google Scholar 

  31. M.A. Mohamed, S.A. Halawy, and M.M. Ebrahim, J. Anal. Appl. Pyrol. 27, 109 (1993).

    Article  Google Scholar 

  32. A.K. Galwey, S.G. Mckee, and T.R.B. Mitchell, React. Solids 6, 173 (1988).

    Article  Google Scholar 

  33. J.C.D. Jesus, I. González, A. Quevedo, and T. Puerta, J. Mol. Catal. A: Chem. 228, 283 (2005).

    Article  Google Scholar 

  34. F.T. Muniz, M.A. Miranda, D.S.C. Morilla, and J.M. Sasaki, Acta Crystallogr. 72, 385 (2016).

    Google Scholar 

  35. F.L. Zhang, L.C. Li, and A.M. Tian, Acta Phys. Chim. Sin. 25, 1883 (2009).

    Google Scholar 

  36. C. Cao, M. Wu, J. Jiang, and H.P. Cheng, Phys. Rev. B: Condens. Matter 81, 2498 (2010).

    Google Scholar 

  37. Z. Ning, X. Du, R. Ran, W. Dong, and C. Chen, J. Supercond. Novel Magn. 26, 3515 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1604132), the National Science and Technolog International Cooperation of China (2014DFR50820), and the Plan for Scientific Innovation Talent of Henan Province, China (154200510022). Thanks are given to Claudiu B. Bucur for improving the readability of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keke Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, F., Zhang, K., Zhang, M. et al. Preparation by Ball Milling–Thermal Decomposition Method and Characterization of Reduced Graphene Oxide Decorated with Ni Nanoparticles. JOM 71, 4264–4273 (2019). https://doi.org/10.1007/s11837-019-03527-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03527-3

Navigation