Skip to main content

Advertisement

Log in

Effects of Temperature on Relaxation Time and Electrical Conductivity of Spent Automobile Catalyst at Microwave Frequencies

  • Urban Mining: Characterization and Recycling of Solid Wastes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Dielectric properties are some of the main parameters of materials, determining their interaction with electromagnetic energy during microwave heating. The dielectric properties of spent automobile catalyst were measured by using the resonance cavity perturbation technique from room temperature to 800°C at 915 MHz and 2450 MHz. The effects of temperature and frequency on the dielectric constant, dielectric loss factor, loss tangent, and penetration depth were studied. The results indicate that spent automobile catalyst is weakly polar, making it difficult to transform electromagnetic energy into heat. The relaxation time and conductivity obtained by numerical calculations further explain from the microlevel that spent automobile catalyst cannot dissipate electromagnetic energy through dipole loss or conduction loss under microwave irradiation. This work describes an effective way to explore the dielectric heating mechanism and a basis for understanding the interactions between microwaves and spent automobile catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.M. Heck and R.J. Farrauto, Appl. Catal. A Gen. 221, 443 (2001).

    Article  Google Scholar 

  2. D. Jimenez de Aberasturi, R. Pinedo, I. Ruiz de Larramendi, J.I. Ruiz de Larramendi, and T. Rojo, Miner. Eng. 24, 505 (2011).

    Article  Google Scholar 

  3. H. Dong, J. Zhao, J. Chen, Y. Wu, and B. Li, Int. J. Miner. Process. 145, 108 (2015).

    Article  Google Scholar 

  4. Y. Wang and X. Li, Procedia Eng. 45, 1004 (2012).

    Article  Google Scholar 

  5. C. Kim, S.I. Woo, and S.H. Jeon, Ind. Eng. Chem. Res. 39, 1185 (2000).

    Article  Google Scholar 

  6. D. Jafarifar, M.R. Daryanavard, and S. Sheibani, Hydrometallurgy 78, 166 (2005).

    Article  Google Scholar 

  7. T. Suoranta, O. Zugazua, M. Niemelä, and P. Perämäki, Hydrometallurgy 154, 56 (2005).

    Article  Google Scholar 

  8. S. Wang, A. Chen, Z. Zhang, and J. Peng, Environ. Prog. Sustain. 33, 903 (2014).

    Google Scholar 

  9. A. Chen, S. Wang, L. Zhang, and J. Peng, Int. J. Miner. Process. 143, 18 (2015).

    Article  Google Scholar 

  10. P.D. Muley and D. Boldor, Bioresour. Technol. 127, 165 (2013).

    Article  Google Scholar 

  11. G. He, Sh Li, K. Yang, J. Liu, P. Liu, L. Zhang, and J. Peng, Minerals 7, 31 (2017).

    Article  Google Scholar 

  12. Y. Zhang, E. Li, J. Zhang, C. Yu, H. Zheng, and G. Guo, Rev. Sci. Instrum. 89, 024701 (2018).

    Article  Google Scholar 

  13. S. Ryynänen, J. Food Eng. 26, 409 (1995).

    Article  Google Scholar 

  14. E.T. Thostenson and T.W. Chou, Compos. Part A Appl. S. 30, 1055 (1999).

    Article  Google Scholar 

  15. H. Luo, Y. Tan, Y. Li, P. Xiao, L. Deng, S. Zeng, G. Zhang, H. Zhang, X. Zhou, and S. Peng, J. Eur. Ceram. Soc. 37, 1961 (2017).

    Article  Google Scholar 

  16. D. Fan, L. Wang, N. Zhang, L. Xiong, L. Huang, J. Zhao, M. Wang, and H. Zhang, Sci. Rep. 7, 3967 (2017).

    Article  Google Scholar 

  17. B.D. Roebuck, S.A. Goldblith, and W.B. Westphal, J. Food Sci. 37, 199 (2010).

    Article  Google Scholar 

  18. Z. Peng, X. Lin, X. Wu, J.Y. Hwang, B.G. Kim, Y. Zhang, G. Li, and T. Jiang, Fuel Process. Technol. 150, 58 (2016).

    Article  Google Scholar 

  19. W.E. Pace, W.B. Westphal, and S.A. Goldblith, J. Food Sci. 33, 30 (1968).

    Article  Google Scholar 

  20. B.D. Roebuck, S.A. Goldblith, and W.B. Westphal, J. Food Sci. 37, 199 (1972).

    Article  Google Scholar 

  21. D. Luan, J. Tang, F. Liu, Z. Tang, F. Li, H. Lin, and B. Stewart, J. Food Eng. 161, 40 (2015).

    Article  Google Scholar 

  22. A.P. Franco, L.Y. Yamamoto, C.C. Tadini, and J.A.W. Gut, J. Food Eng. 155, 69 (2015).

    Article  Google Scholar 

  23. A.C. Metaxas and R.J. Meredith, Industrial Microwave Heating (Stevenage: The Institution of Engineering and Technology, 2008).

    Google Scholar 

  24. A. Laybourn, J. Katrib, P.A. Palade, T.L. Easun, N.R. Champness, M. Schroder, and S.W. Kingman, Phys. Chem. Chem. Phys. 18, 5419 (2016).

    Article  Google Scholar 

  25. M. Tripathi, J.N. Sahu, P. Ganesan, P. Monash, and T.K. Dey, J. Anal. Appl. Pyrol. 112, 306 (2015).

    Article  Google Scholar 

  26. M. Cao, W. Song, Z. Hou, B. Wen, and J. Yuan, Carbon 48, 788 (2010).

    Article  Google Scholar 

  27. Y. Mu, W. Zhou, Y. Hu, H. Wang, F. Luo, D. Ding, and Y. Qing, J. Eur. Ceram. Soc. 35, 2991 (2015).

    Article  Google Scholar 

  28. H. Liu, H. Tian, and H. Cheng, J. Nucl. Mater. 432, 57 (2013).

    Article  Google Scholar 

  29. Z. Ovadyahu, Phys. Rev. B 84, 165209 (2011).

    Article  Google Scholar 

  30. A. Sayyadi-Shahraki, E. Taheri-Nassaj, H. Sharifi, J. Gonzales, T. Kolodiazhnyi, and N. Newman, J. Am. Ceram. Soc. 101, 1665 (2018).

    Article  Google Scholar 

  31. C. Cheng, R. Fan, Z. Wang, Q. Shao, X. Guo, P. Xie, Y. Yin, Y. Zhang, L. An, Y. Lei, J.E. Ryu, A. Shankar, and Z. Guo, Carbon 125, 103 (2017).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 51664037, U1402274, and 51504217).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shixing Wang or Libo Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Qu, W., Ju, S. et al. Effects of Temperature on Relaxation Time and Electrical Conductivity of Spent Automobile Catalyst at Microwave Frequencies. JOM 71, 2353–2359 (2019). https://doi.org/10.1007/s11837-019-03524-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03524-6

Navigation