Skip to main content
Log in

Microwave Dielectric Properties and Reduction Behavior of Low-Grade Pyrolusite

  • Sustainable Pyrometallurgical Processing
  • Published:
JOM Aims and scope Submit manuscript

A Correction to this article was published on 13 May 2020

This article has been updated

Abstract

Manganese ore is an important mineral having a strategic role in the development of the national economy and society. In this study, the dielectric properties, heating curve, crystal structure, and reduction ratio of a low-grade pyrolusite were investigated. The dielectric constant, dielectric loss factor, and loss tangent coefficient of low-grade pyrolusite at room temperature were evaluated using the resonant cavity perturbation method, yielding values of 5.854, 0.146, and 0.0249, respectively. Owing to the excellent microwave absorption properties of low-grade pyrolusite with 10% coal (22 g), it could be heated to a temperature of 800°C within 200 s. X-ray diffraction results confirmed that MnO2 was partially transformed into MnO at 450°C, while, at 650°C, no diffraction peak of MnO2 was observed. At a reduction temperature of 550°C, a reduction ratio of MnO2 to MnO of 96.65% could be achieved within a holding time of 50 min. This study demonstrates that the microwave carbothermal reduction of a low-grade pyrolusite is efficient, and thus could promote the clean production and sustainable development of the manganese industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 13 May 2020

    Corresponding author designation is missing for Jin Chen in the original publication of this article.

References

  1. D. Moradkhani, M. Malekzadeh, and E. Ahmadi, Trans. Nonferr. Met. Soc. 23, 134 (2013).

    Article  Google Scholar 

  2. H.L. Zhang, G.C. Zhu, H. Yan, Y.N. Zhao, T.C. Li, and X.J. Feng, Acta Metall. Sin. (Engl. Lett.) 26, 167 (2013).

    Article  Google Scholar 

  3. Y.L. Feng, Z.L. Cai, H.R. Li, Z.W. Du, and X.W. Liu, Int. J. Min. Mater. 20, 221 (2013).

    Article  Google Scholar 

  4. Z. Cheng, G.C. Zhu, and Y.N. Zhao, Hydrometallurgy 96, 176 (2009).

    Article  Google Scholar 

  5. J. Chen, P.F. Tian, X.A. Song, N. Li, and J.X. Zhou, J. Iron Steel Res. Int. 17, 13 (2010).

    Article  Google Scholar 

  6. J.J. Song, G.C. Zhu, P. Zhang, and Y.N. Zhao, Acta Metall. Sin. 23, 223 (2010).

    Google Scholar 

  7. T.A. Lasheen, M.N. El Hazek, and A.S. Helal, Hydrometallurgy 96, 314 (2009).

    Article  Google Scholar 

  8. W. Xun and L.Y. Dong, J. Am. Chem. Soc. 124, 2880 (2002).

    Article  Google Scholar 

  9. M.S. Bafghi, A. Zakeri, Z. Ghasemi, and M. Adeli, Hydrometallurgy 90, 207 (2007).

    Article  Google Scholar 

  10. A.G. Kholmogorov, A.M. Zhyzhaev, U.S. Kononov, G.A. Moiseeva, and G.L. Pashkov, Hydrometallurgy 56, 1 (2000).

    Article  Google Scholar 

  11. O. Ostrovski, S.E. Olsen, M. Tangstad, and M. Yastreboff, Can. Metall. Q. 41, 309 (2013).

    Article  Google Scholar 

  12. T.J.W. de Bruijn, T.H. Soerawidjaja, W.A. de Jongt, and P.J. van den Berg, Chem. Eng. Sci. 35, 1591 (1980).

    Article  Google Scholar 

  13. P.K. Das, A.S. Anand, and R.P. Das, Hydrometallurgy 50, 39 (1998).

    Article  Google Scholar 

  14. Y. Zhang, Z. You, G. Li, and T. Jiang, Hydrometallurgy 133, 126 (2013).

    Article  Google Scholar 

  15. H.E. Barner and C.L. Mantell, Ind. Eng. Chem. Process. Des. Dev. 7, 285 (1968).

    Article  Google Scholar 

  16. T.S. Park, S.K. Jeong, S.H. Hong, and S.C. Hong, Ind. Eng. Chem. Res. 40, 4491 (2001).

    Article  Google Scholar 

  17. Z.L. Cai, Y.L. Feng, H.R. Li, X.W. Liu, and Z.C. Yang, JOM 64, 1296 (2012).

    Article  Google Scholar 

  18. Y. Zhao, G. Zhu, and Z. Cheng, Hydrometallurgy 105, 96 (2010).

    Article  Google Scholar 

  19. Q.X. Ye, H.B. Zhu, L.B. Zhang, P. Liu, G. Chen, and J.H. Peng, RSC Advances 4, 58164 (2014).

    Article  Google Scholar 

  20. Y.X. Hua, G. Yao, Y.H. Xu, and L.J. Hua, J. Kunming Univ. Sci. Technol. 3, 85 (1998).

    Google Scholar 

  21. M.S. Bafghi, A. Zakeri, Z. Ghasemi, and M. Adeli, Hydrometallurgy 90, 207 (2008).

    Article  Google Scholar 

  22. K.Q. Li, J. Chen, G. Chen, J.H. Peng, R. Ruan, and C. Srinivasakannan, Bioresour. Technol., (2019). https://doi.org/10.1016/j.biortech.2019.121381.

  23. Q.X. Ye, J.J. Ru, J.H. Peng, G. Chen, and D. Wang, Chem. Eng. J. 331, 570 (2018).

    Article  Google Scholar 

  24. A.X. He, G. Chen, J. Chen, J.H. Peng, C. Srinivasakannan, and R.S. Ruan, Powder Technol. 323, 115 (2018).

    Article  Google Scholar 

  25. G. Chen, Z. Song, J. Chen, J. Peng, and C. Srinivasakannan, J. Alloys Compd. 579, 612 (2013).

    Article  Google Scholar 

  26. G. Chen, L. Li, C.Y. Tao, Z.H. Liu, N.X. Chen, and J.H. Peng, J. Alloys Compd. 657, 515 (2016).

    Article  Google Scholar 

  27. G. Chen, X.D. Chang, J. Chen, W. Zhao, and J.H. Peng, High Temp. Mater. 34, 757 (2015).

    Google Scholar 

  28. G. Chen, J. Chen, and J.H. Peng, Powder Technol. 286, 218 (2015).

    Article  Google Scholar 

  29. Q.X. Ye, Study on Microwave-Enhanced Carbon Thermal Reduction of Low-Grade Pyrolusite (Kunming: Kunming University of Science and Technology, 2017).

    Google Scholar 

Download references

Acknowledgements

Financial support from the National Scientific Foundation of China (No.: U1802255), the Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (No. 2015BAB17B00), the Hunan Provincial Science and Technology Plan Project, China (No. 2016TP1007), and Innovative Research Team (in Science and Technology) in University of Yunnan Province were sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F., Chen, J., Chen, G. et al. Microwave Dielectric Properties and Reduction Behavior of Low-Grade Pyrolusite. JOM 71, 3909–3914 (2019). https://doi.org/10.1007/s11837-019-03522-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03522-8

Navigation