, Volume 71, Issue 7, pp 2420–2429 | Cite as

Progress in Application of Energy-Saving Measures in Aluminum Reduction Cells

  • Wei LiuEmail author
  • Dongfang Zhou
  • Zhibin Zhao
Technical Article


The Hall–Herault process is the only methodology applied in the industrial production of aluminum. Energy saving has long been the focus of the aluminum industry since its invention. Nowadays, the pursuit of high productivity, low DC energy consumption and large-scale cell adds new urgency to energy saving, among which the improvement of magnetic-hydro-dynamic (MHD) stability in aluminum electrolysis cells plays a very important role. This article reviewed the developments and applications of the measures in improving MHD stability in terms of structure, effectiveness, simulation, pilot and industrial results. Also some studies were conducted on a TiB2 wettable cathode. At the end, some suggestions on further reduction of energy consumption in the future are proposed.



The authors would like to express their gratitude for the financial support by the National Natural Science Foundation of China (No. 51434005) and the National High-tech R&D Program (863 Program) of China (No. 2009AA064501).


  1. 1.
  2. 2.
    J.W. Evans, JOM 59, 30 (2007).CrossRefGoogle Scholar
  3. 3.
    C. Vanvoren, P. Homsi, J.L. Basquin, and T. Beheregaray, Light Metals 2001, ed. J.L. Anjier (New Orleans, LA: TMS, 2001), pp. 221–226.Google Scholar
  4. 4.
    Y. Yang, D. Li, J. Meng, X. Mo, C. Song, and X. Wang, China Alum. Mon. 5, 2 (2014).Google Scholar
  5. 5.
    K. Mori, K. Shiota, N. Urata, and H. Ikeuchi, Light Metals 1976, ed. S.R. Leavitt (New Orleans, LA: Metallurigical Society of AIME, 1976), pp. 77–95.Google Scholar
  6. 6.
    R.J. Moreau and D. Ziegler, Light Metals 1986, ed. R.E. Miller (New Orleans, LA: Metallurigical Society of AIME, 1986), pp. 359–364.Google Scholar
  7. 7.
    M. Segatz and C. Droste, Light Metals 1994, ed. U. Mannweiler (San Francisco, CA: TMS, 1994), pp. 313–322.Google Scholar
  8. 8.
    A.D. Sneyd and A. Wang, J. Fluid Mech. 263, 343 (1994).CrossRefGoogle Scholar
  9. 9.
    H. Sun, O. Zikanov, and D.P. Ziegler, Fluid Dyn. Res. 35, 255 (2004).CrossRefGoogle Scholar
  10. 10.
    H. Sun, O. Zikanov, and B.A. Finlayson, Magnetohydrodynamics 41, 273 (2005).Google Scholar
  11. 11.
    T. Sele, Metall. Trans. B (Process Metall.) 8B, 613 (1977).CrossRefGoogle Scholar
  12. 12.
    N. Urata, Light Metals 1985, ed. H.O. Bohner (New York, NY: Metallurgical Society of AIME, 1985), pp. 581–591.Google Scholar
  13. 13.
    O. Zikanov, A. Thess, P.A. Davidson, and D.P. Ziegler, JOM 31B, 1541 (2000).Google Scholar
  14. 14.
    D. Munger and A. Vincent, Magnetohydrodynamics 42, 417 (2006).Google Scholar
  15. 15.
    W. Liu, D. Zhou, Y. Liu, M. Liu, and X. Yang, Light Metals 2015, ed. M. Hyland (Orlando: TMS, 2015), pp. 479–482.Google Scholar
  16. 16.
    GB50850-2013, Code for Design of Aluminum Smelter Processes, 1st ed. (Beijing, China Planning Press, 2013), pp. 14.Google Scholar
  17. 17.
    R. Moreau and J. Evans, J. Electrochem. Soc. 131, 2251 (1984).CrossRefGoogle Scholar
  18. 18.
    Y. Song, J. Peng, Y. Di, Y. Wang, B. Li, and N. Feng, JOM 68, 593 (2016).CrossRefGoogle Scholar
  19. 19.
    B. Li, X. Zhang, S. Zhang, F. Wang, and N. Feng, Light Metals 2011, ed. S.J. Lindsay (San Diego, CA: TMS, 2011), pp. 1029–1033.Google Scholar
  20. 20.
    Q. Wang, B. Li, Z. He, and N. Feng, Metall. Trans. B 45, 272 (2014).CrossRefGoogle Scholar
  21. 21.
    N. Feng, Y. Tian, J. Peng, Y. Wang, X. Qi, and G. Tu, Light Metals 2010, ed. J.A. Johnson (Seattle, WA: TMS, 2010), pp. 405–408.Google Scholar
  22. 22.
    N. Feng, China patent, CN101054691A (2007).Google Scholar
  23. 23.
    W. Liu, X. Yang, and D. Zhou, Light Metals 4, 24 (2011).Google Scholar
  24. 24.
    S. Renaudier, S. Langlois, B. Bardet, M. Picasso, and A. Masserey, Light Metals 2018, ed. O. Martin (Phoenix, AZ: TMS, 2018), pp. 541–549.CrossRefGoogle Scholar
  25. 25.
    V. Bojarevics, Light Metals, ed. S. Barry (San Antonio: TMS, 2013), pp. 609–614.Google Scholar
  26. 26.
    Alcoa Inc, US Patent, 6,231,745 B1 (2001)Google Scholar
  27. 27.
    M. Gagnon, P. Goulet, R. Beeler, D. Ziegler, and M. Fafard, Light Metals 2013, ed. Barry Sadler (San Antonio: TMS, 2013), pp. 621–626.CrossRefGoogle Scholar
  28. 28.
    A. Alzarouni, A. Alzarooni, N. Ahli, S. Akhmetov, and A. Arkhipov, Light Metals 2017, ed. A.P. Ratvik (San Francisco, CA: TMS, 2017), pp. 769–774.CrossRefGoogle Scholar
  29. 29.
    R. von Kaenel, J. Antille, and L. Bugnion, Light Metals 2015, ed. M. Hyland (Orlando: TMS, 2015), pp. 807–812.CrossRefGoogle Scholar
  30. 30.
    R. von Kaenel, L. Bugnion, L. von Kaenel, G. Spinetti, and M. Pfeffer, Travaux 46 (Hamburg: ICSOBA, 2017), pp. 879–889.Google Scholar
  31. 31.
    S. Das, Y. Morsi, and G. Brooks, JOM 66, 235 (2014).CrossRefGoogle Scholar
  32. 32.
    Shengyang Al and Mg Eng. Res. Inst., China patent, CN102453927A (2012).Google Scholar
  33. 33.
    D. Zhou, X. Yang, and W. Liu, Light Metals 2012, ed. C.E. Suarez (Orlando: TMS, 2012), pp. 607–612.Google Scholar
  34. 34.
    W. Tao, L. Wang, Z. Wang, G. Gao, S. Zhong, X. Hu, and J. Cui, JOM 67, 322 (2015).CrossRefGoogle Scholar
  35. 35.
    B. Zhao, Light Metals (in Chinese), (5), 1 (2015).Google Scholar
  36. 36.
    D. Zhou, Y. Liu, and S. Tao, Light Metals 2018, ed. O. Martin (Phoenix, AZ: TMS, 2018), pp. 1223–1228.CrossRefGoogle Scholar
  37. 37.
    Shengyang Al and Mg Eng. Res. Inst., China patent, CN203333778U (2013).Google Scholar
  38. 38.
    W. Li, Y. Zhang, and D. Chai, Light Metals 2014, ed. J. Grandfield (San Diego, CA: TMS, 2014), pp. 495–499.Google Scholar
  39. 39.
    J. Ding, J. Zhang, F. Ji, and H. Zhang, J. Kunming Univ. Sci Tech. Natural Sci. Ed. 36, 15 (2011).Google Scholar
  40. 40.
    Shengyang Al and Mg Eng. Res. Inst., China patent, CN201110362495.9 (2012).Google Scholar
  41. 41.
    Aluminium Pechiney, US Patent, 4,713,161 (1987)Google Scholar
  42. 42.
    Y. Caratini, I. Mantha, B. Bardet, S. Bécasse, A. Blais, M. Forté, S. Guérard, ICSOBA 2015, (Dubai, The United Arab Emirates: ICSOBA, 2015) pp. 1-10.Google Scholar
  43. 43.
    O. Martin, B. Benkahla, T. Tomasino, S. Fardeau, C. Richard, and I. Hugron, Light Metals 2007, ed. M. Sorlie (Orlando, FL: TMS, 2007), pp. 253–258.Google Scholar
  44. 44.
    S. Becasse, O. Martin, B. Allano, Y. Caratini, and D. Tinka, Light Metals 2018, ed. O. Martin (Phoenix, AZ: TMS, 2018), pp. 699–704.CrossRefGoogle Scholar
  45. 45.
    V. V. Platonov, V. V. Pingin, V. C. Mann. US Patent, 2008/0078674 A1 (2008)Google Scholar
  46. 46.
    V.K.h. Mann, A.V. Zavadyak, V.V. Pingin, V.V. Platonov, and I.I. Puzanov, Light Met. Age 75, 22 (2017).Google Scholar
  47. 47.
    V. Mann, A. Zavadyak, I. Puzanov, V. Platonov, and V. Pingin, Light Metals 2018, ed. O. Martin (Phoenix, AZ: TMS, 2018), pp. 715–719.CrossRefGoogle Scholar
  48. 48.
    Norsk Hydro ASA, US Patent, 8,070,921 B2 (2011)Google Scholar
  49. 49.
    A. Svendsen, Light Met. Age 76, 20 (2018).Google Scholar
  50. 50.
    J. Li, X. Lv, Y. Lai, Q. Li, and Y. Liu, JOM 60, 32 (2008).CrossRefGoogle Scholar
  51. 51.
    F. Liu, S. Gu, J. Wang, and H. Yang, Light Metals 2011, ed. S.J. Lindsay (San Diego, CA: TMS, 2011), pp. 509–512.Google Scholar
  52. 52.
    G Xie. Yunnan Metallurgical Group, Guiyang, China (2018) (unpublished research) Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Shenyang Aluminum and Magnesium Engineering and Research Institute Co., Ltd.ShenyangPeople’s Republic of China

Personalised recommendations