Influence of Metal Additives on Microstructure and Properties of Amorphous Metal–SiOC Composites


Strong, ductile, and irradiation-tolerant structural materials are in urgent demand for improving the safety and efficiency of advanced nuclear reactors. Amorphous ceramics could be promising candidates for high irradiation tolerance due to thermal stability and lack of crystal defects. However, they are very brittle due to plastic flow instability. Here, we realized enhanced plasticity of amorphous ceramics through compositional and microstructural engineering. Two metal–amorphous ceramic composites, Fe-SiOC and Cu-SiOC, were fabricated by magnetron sputtering. Iron atoms are preferred to form uniformly distributed nano-sized Fe-rich amorphous clusters, while copper atoms grow non-uniformly distributed nano-crystalline Cu particles. The Fe-SiOC composite exhibits high strength and plasticity associated with strain hardening, as well as a good thermal stability and irradiation tolerance. In contrast, the Cu-SiOC composite displays a very low plasticity and poor thermal stability. These findings suggest that the metal constituents play a crucial role in developing microstructure and determining properties of metal–amorphous composites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Y. Katoh, Q. Huang, Y.-H. Han, and S. Risbud, Scr. Mater. 143, 126 (2018).

    Article  Google Scholar 

  2. 2.

    T. Allen, J. Busby, M. Meyer, and D. Petti, Mater. Today 13, 14 (2010).

    Article  Google Scholar 

  3. 3.

    S.J. Zinkle and G. Was, Acta Mater. 61, 735 (2013).

    Article  Google Scholar 

  4. 4.

    P. Yvon and F. Carré, J. Nucl. Mater. 385, 217 (2009).

    Article  Google Scholar 

  5. 5.

    F. Garner, Compr. Nucl. Mater. 4, 33 (2012).

    Article  Google Scholar 

  6. 6.

    J. Gigax, T. Chen, H. Kim, J. Wang, L. Price, E. Aydogan, S.A. Maloy, D. Schreiber, M. Toloczko, and F. Garner, J. Nucl. Mater. 482, 257 (2016).

    Article  Google Scholar 

  7. 7.

    L. Tan, Y. Katoh, A.A.F. Tavassoli, J. Henry, M. Rieth, H. Sakasegawa, H. Tanigawa, and Q. Huang, J. Nucl. Mater. 479, 515 (2016).

    Article  Google Scholar 

  8. 8.

    E. Little and D. Stow, J. Nucl. Mater. 87, 25 (1979).

    Article  Google Scholar 

  9. 9.

    M.-L. Lescoat, J. Ribis, Y. Chen, E. Marquis, E. Bordas, P. Trocellier, Y. Serruys, A. Gentils, O. Kaïtasov, and Y. De Carlan, Acta Mater. 78, 328 (2014).

    Article  Google Scholar 

  10. 10.

    I. Monnet, P. Dubuisson, Y. Serruys, M.-O. Ruault, O. Kaı, and B. Jouffrey, J. Nucl. Mater. 335, 311 (2004).

    Article  Google Scholar 

  11. 11.

    A. Certain, S. Kuchibhatla, V. Shutthanandan, D. Hoelzer, and T. Allen, J. Nucl. Mater. 434, 311 (2013).

    Article  Google Scholar 

  12. 12.

    G.R. Odette and D.T. Hoelzer, JOM 62, 84 (2010).

    Article  Google Scholar 

  13. 13.

    A. Misra, M.J. Demkowicz, X. Zhang, and R.G. Hoagland, JOM 59, 62 (2007).

    Article  Google Scholar 

  14. 14.

    X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M.L. Taheri, H. Wang, J. Wang, and M. Nastasi, Prog. Mater Sci. 96, 217 (2018).

    Article  Google Scholar 

  15. 15.

    M. Nastasi, Q. Su, L. Price, J.A. Colón Santana, T. Chen, R. Balerio, and L. Shao, J. Nucl. Mater. 461, 200 (2015).

    Article  Google Scholar 

  16. 16.

    Q. Su, B. Cui, M.A. Kirk, and M. Nastasi, Philos. Mag. Lett. 96, 60 (2016).

    Article  Google Scholar 

  17. 17.

    P. Colombo, G. Mera, R. Riedel, and G.D. Sorarù, J. Am. Ceram. Soc. 93, 1805 (2010).

    Google Scholar 

  18. 18.

    Q. Su, S. King, L. Li, T. Wang, J. Gigax, L. Shao, W.A. Lanford, and M. Nastasi, Scr. Mater. 146, 316 (2018).

    Article  Google Scholar 

  19. 19.

    K. Ming, C. Gu, Q. Su, Y. Wang, A. Zare, D.A. Lucca, M. Nastasi, and J. Wang, J. Nucl. Mater. 516, 289 (2019).

    Article  Google Scholar 

  20. 20.

    J.A. Colón Santana, E.E. Mora, L. Price, R. Balerio, L. Shao, and M. Nastasi, Nucl. Instrum. Methods B 350, 6 (2015).

    Article  Google Scholar 

  21. 21.

    Q. Su, S. Inoue, M. Ishimaru, J. Gigax, T. Wang, H. Ding, M.J. Demkowicz, L. Shao, and M. Nastasi, Sci. Rep. 7, 3900 (2017).

    Article  Google Scholar 

  22. 22.

    C.G. Pantano, A.K. Singh, H. Zhang, and J. Sol-Gel, Sci. Technol. 14, 7 (1999).

    Google Scholar 

  23. 23.

    G.D. Sorarù, D. Suttor, and J. Sol-Gel, Sci. Technol. 14, 69 (1999).

    Google Scholar 

  24. 24.

    R. Harshe, C. Balan, and R. Riedel, J. Eur. Ceram. Soc. 24, 3471 (2004).

    Article  Google Scholar 

  25. 25.

    G.D. Sorarù, E. Dallapiccola, and G. D’Andrea, J. Am. Ceram. Soc. 79, 2074 (1996).

    Article  Google Scholar 

  26. 26.

    T. Rouxel, G.-D. Soraru, and J. Vicens, J. Am. Ceram. Soc. 84, 1052 (2001).

    Article  Google Scholar 

  27. 27.

    T. Rouxel, G. Massouras, G.-D. Sorarù, and J. Sol-Gel, Sci. Technol. 14, 87 (1999).

    Google Scholar 

  28. 28.

    G.D. Sorarù, S. Modena, E. Guadagnino, P. Colombo, J. Egan, and C. Pantano, J. Am. Ceram. Soc. 85, 1529 (2002).

    Article  Google Scholar 

  29. 29.

    A. Argon, Acta Metall. 27, 47 (1979).

    Article  Google Scholar 

  30. 30.

    A. Greer, Y. Cheng, and E. Ma, Mater. Sci. Eng. R 74, 71 (2013).

    Article  Google Scholar 

  31. 31.

    C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Acta Mater. 55, 4067 (2007).

    Article  Google Scholar 

  32. 32.

    M.M. Trexler and N.N. Thadhani, Prog. Mater Sci. 55, 759 (2010).

    Article  Google Scholar 

  33. 33.

    M. Chen, Annu. Rev. Mater. Res. 38, 445 (2008).

    Article  Google Scholar 

  34. 34.

    W.H. Wang, Prog. Mater Sci. 57, 487 (2012).

    Article  Google Scholar 

  35. 35.

    Y. Cheng and E. Ma, Prog. Mater. Sci. 56, 379 (2011).

    Article  Google Scholar 

  36. 36.

    J. Pan, Q. Chen, L. Liu, and Y. Li, Acta Mater. 59, 5146 (2011).

    Article  Google Scholar 

  37. 37.

    L. Li, E.R. Homer, and C.A. Schuh, Acta Mater. 61, 3347 (2013).

    Article  Google Scholar 

  38. 38.

    J. Qiao, H. Jia, and P.K. Liaw, Mater. Sci. Eng. R 100, 1 (2016).

    Article  Google Scholar 

  39. 39.

    J. Wang, Q. Zhou, S. Shao, and A. Misra, Mater. Res. Lett. 5, 1 (2017).

    Article  Google Scholar 

  40. 40.

    A. Misra, M. Demkowicz, J. Wang, and R. Hoagland, JOM 60, 39 (2008).

    Article  Google Scholar 

  41. 41.

    A. Misra, J. Hirth, and R. Hoagland, Acta Mater. 53, 4817 (2005).

    Article  Google Scholar 

  42. 42.

    Y. Wang, J. Li, A.V. Hamza, and T.W. Barbee, Proc. Natl. Acad. Sci. USA 104, 11155 (2007).

    Article  Google Scholar 

  43. 43.

    M. Chen, A. Inoue, W. Zhang, and T. Sakurai, Phys. Rev. Lett. 96, 245502 (2006).

    Article  Google Scholar 

  44. 44.

    L. Zhu, S. Shi, K. Lu, and J. Lu, Acta Mater. 60, 5762 (2012).

    Article  Google Scholar 

  45. 45.

    T. Fang, W. Li, N. Tao, and K. Lu, Science 331, 1587 (2011).

    Article  Google Scholar 

  46. 46.

    K. Lu, Science 345, 1455 (2014).

    Article  Google Scholar 

  47. 47.

    X. Wu, P. Jiang, L. Chen, F. Yuan, and Y.T. Zhu, Proc. Natl. Acad. Sci. USA 111, 7197 (2014).

    Article  Google Scholar 

  48. 48.

    M. Nastasi, N. Michael, J. Mayer, J.K. Hirvonen, and M. James, Ion-Solid Interactions: Fundamentals and Applications (Cambridge: Cambridge University Press, 1996).

    Google Scholar 

  49. 49.

    T. Rouxel, J. Am. Ceram. Soc. 90, 3019 (2007).

    Article  Google Scholar 

  50. 50.

    Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press, 2007).

    Google Scholar 

Download references


We acknowledge the partial financial support from the Department of Energy (DOE) Office of Nuclear Energy and Nuclear Energy Enabling Technologies through Award No. DE-NE0008415, and from the Nebraska Public Power District through the Nebraska Center for Energy Sciences Research at the University of Nebraska-Lincoln. The research was performed in part in National Nanotechnology Coordinated Infrastructure and the Nebraska Center for Materials and Nanoscience, which are supported by the National Science Foundation under Award ECCS: 1542182 and the Nebraska Research Initiative. Ion irradiation was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. DOE Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396.

Author information



Corresponding author

Correspondence to Jian Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 12166 kb)

Supplementary material 2 (MP4 5659 kb)

Supplementary material 3 (MP4 3849 kb)

Supplementary material 4 (MP4 5777 kb)

Supplementary material 5 (MP4 10054 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ming, K., Su, Q., Gu, C. et al. Influence of Metal Additives on Microstructure and Properties of Amorphous Metal–SiOC Composites. JOM 71, 2445–2451 (2019).

Download citation