Skip to main content
Log in

Cu/SiCP Composites Prepared by In-Situ Carbonization Synthesis

  • Characterization of Advanced Sintering Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Cu/SiCP composites with high strength and high conductivity were prepared by in situ carbonization reaction of silicon. The Cu-Si powder and C powder were mechanically mixed, and in situ carbonized at 850°C for 48 h, then oxidation-treated in dry air atmosphere at 650°C for 8 h, followed by reduction-treating in hydrogen atmosphere at 500°C for 90 min. The results showed that some nano-scale and micron-scale SiCp particles as well as a small amount of nano-scale SiO2 formed during fabrication. The tensile strength, yield strength, elongation and conductivity of the hot-extruded composite were 279 MPa, 180 MPa, 22.80% and 91.48% IACS, respectively; and those of the composite treated by cold-rolling with a reduction of 80% and then annealing at 350°C for 30 min were 425 MPa, 403 MPa, 10.85% and 90.15% IACS, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.C. Efe, M. Ipek, S. Zeytin, and C. Bindal, Compos. Part B 43, 1813 (2012).

    Article  Google Scholar 

  2. J. Sudagar, J. Lian, and W. Sha, J. Alloy. Compd. 44, 183 (2013).

    Article  Google Scholar 

  3. J.T. Jiang, L. Zhen, C.Y. Xu, and X.L. Wu, Surf. Coat. Tech. 201, 3139 (2006).

    Article  Google Scholar 

  4. S. Liang, L. Xu, L. Fang, and Z. Fan, Powder Metall. Tech. 21, 201 (2003).

    Google Scholar 

  5. M.S. Motta, P.K. Jena, E.A. Brocchi, and I.G. Solórzano, Mater. Sci. Eng., C 15, 175 (2001).

    Article  Google Scholar 

  6. Z. Zhang and X.U. Shaofan, Chin. J. Rare. Met. 26, 359 (2007).

    Article  Google Scholar 

  7. P. Gonon and F. El Kamel, J. Appl. Phys. 101, 1414 (2007).

    Article  Google Scholar 

  8. F. Shojaeepour, P. Abachi, and K. Purazrang, Powder Technol. 222, 80 (2012).

    Article  Google Scholar 

  9. G.C. Efe, S. Zeytin, and C. Bindal, Mater. Des. 36, 633 (2012).

    Article  Google Scholar 

  10. M. Barmouz, P. Asadi, M.K.B. Givi, and M. Taherishargh, Mater. Sci. Eng., A 528, 1740 (2011).

    Article  Google Scholar 

  11. K.M. Shu and G.C. Tu, Int. J. Mach. Tools Manuf. 43, 845 (2003).

    Article  Google Scholar 

  12. R. Treichler, T. Weissgaerber, and T. Kiendl, Appl. Surf. Sci. 252, 7086 (2006).

    Article  Google Scholar 

  13. N.B. Khosroshahi, R.A. Khosroshahi, R.T. Mousavian, and D. Brabazon, Surf. Eng. 30, 747 (2014).

    Article  Google Scholar 

  14. H. Ming, Y. Zhang, L. Tang, S. Lin, and G. Jing, Appl. Surf. Sci. 332, 720 (2015).

    Article  Google Scholar 

  15. M.R. Akbarpour, E. Salahi, F.A. Hesari, E.Y. Yoon, H.S. Kim, and A. Simchi, Mater. Sci. Eng., A 68, 33 (2013).

    Article  Google Scholar 

  16. M.S. Motta, P.K. Jena, E.A. Brocchi, and I.G. Solórzano, Mater. Sci. Eng., C 15, 175 (2001).

    Article  Google Scholar 

  17. S.J. Han, J. Seo, K.H. Choe, and M.H. Kim, Met. Mater. Inter. 21, 270 (2015).

    Article  Google Scholar 

  18. M.R. Akbarpour and S. Alipour, Ceram. Int. 43, 13364 (2017).

    Article  Google Scholar 

  19. H.K. Kang, Surf. Coat. Tech. 190, 448 (2005).

    Article  Google Scholar 

  20. N.R. Tao, Z.B. Wang, and W.P. Tong, Acta Mater. 50, 4603 (2002).

    Article  Google Scholar 

  21. M. Mabuchi, Acta Mater. 44, 4611 (1996).

    Article  Google Scholar 

  22. J. Lee, J.Y. Jung, and E.S. Lee, Mater. Sci. Eng., A 277, 274 (2000).

    Article  Google Scholar 

  23. Y.J. Zhou, K.X. Song, and J.D. Xing, J. Alloys Compd. 658, 920 (2016).

    Article  Google Scholar 

  24. Z.Q. Zheng, Fundamentals of Materials Science (Changsa: Central South University Press, 2005).

    Google Scholar 

  25. B. Lengeler, W. Schilling, and H. Wenzl, J. Low Tempe Phys. 2, 237 (1970).

    Article  Google Scholar 

  26. Y. Li, Z. Xiao, Z. Li, Z. Zhou, Z. Yang, and Q. Lei, J. Alloy. Compd. 723, 1162 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the National key R & D program of China (Grant No. 2016YFB0301301), National Natural Science Foundation of China (Grant Nos. U1637210 & 51601227), Natural Science Foundation of Hunan Province (Grant No. 2018JJ3650), and the Project of State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, T., Dai, J., Qiu, W. et al. Cu/SiCP Composites Prepared by In-Situ Carbonization Synthesis. JOM 71, 2513–2521 (2019). https://doi.org/10.1007/s11837-019-03483-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03483-y

Navigation