Skip to main content
Log in

Dissolution Kinetics of Mg17Al12 Eutectic Phase and Its Effect on Corrosion Behavior of As-Cast AZ80 Magnesium Alloy

  • Second-Phase Particles in Magnesium Alloys: Engineering for Properties and Performance
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Mg17Al12 eutectic phase strongly affects the mechanical and corrosion properties of AZ80 magnesium alloy. In this study, the dissolution kinetics of Mg17Al12 phase was evaluated at 420°C. The dissolution was found to follow the Johnson–Mehl–Avrami–Kolmogorov (JMAK) model with time exponent (n) of ~ 0.61, suggesting a decrease in the rate of dissolution of Mg17Al12 with time due to enrichment of aluminum in the matrix adjacent to precipitates. The effect of dissolution of Mg17Al12 phase on the corrosion behavior of the alloy was investigated by dynamic polarization measurements in NaCl solution. Analysis of the morphology of the corrosion surface by scanning electron microscopy and investigation of the corrosion products by x-ray diffraction analysis and Raman spectroscopy suggested an increase in the corrosion resistance of the alloy with a decrease in the Mg17Al12 phase fraction. This was attributed to the loss of effectiveness of microgalvanic cells formed between the precipitate and matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.L. Mordik and T. Ebert, Mater. Sci. Eng., A 302, 37–45 (2001).

    Article  Google Scholar 

  2. A.L. Alan, J. Magnes. Alloys 1, 2–22 (2013).

    Article  Google Scholar 

  3. H. Friedrich and S. Schumann, J. Mater. Process. Technol. 117, 276–281 (2001).

    Article  Google Scholar 

  4. B.A. Shaw, Corrosion Resistance of Magnesium Alloys. ASM Handbook 13A, 693–696 (2003).

  5. G.L. Song, Corrosion Prevention of Magnesium Alloys, 1st ed. (USA: Woodhead Publishing, 2013), pp. 3–37.

    Book  Google Scholar 

  6. Z. Wang, Y. Yang, B. Li, Y. Zhang, and Z. Zhang, Mater. Sci. Eng., A 582, 36–40 (2013).

    Article  Google Scholar 

  7. M. Esmaily, J.E. Svesson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thoms, and L.G. Johansson, Prog. Mater Sci. 89, 92–193 (2017).

    Article  Google Scholar 

  8. J. Liao and M. Hotta, Corros. Sci. 100, 353–364 (2015).

    Article  Google Scholar 

  9. Y.C. Zhao, M.C. Zhao, R. Xu, L. Liu, J.X. Tao, C. Gao, C. Shuai, and A. Atrens, J. Alloys Compd. 770, 549–558 (2019).

    Article  Google Scholar 

  10. A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, and S. Feliu Jr, Electrochim. Acta 53, 7890–7902 (2008).

    Article  Google Scholar 

  11. K. Gusieva, C.H.J. Davies, J.R. Scully, and N. Birbilis, Int. Mater. Rev. 60, 169–194 (2015).

    Article  Google Scholar 

  12. R. Ambat, N.N. Aung, and W. Zhou, Corros. Sci. 42, 1433–1455 (2000).

    Article  Google Scholar 

  13. Md. Imran Khan, A.O. Mostafa, M. Aljarrah, E. Essadiqi, and M. Medraj, J. Mater. 2014, 1–18 (2014).

    Article  Google Scholar 

  14. A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, and D.H. Stjohn, J. Light Metals 1, 61–72 (2001).

    Article  Google Scholar 

  15. I.A. Yakubtsov, B.J. Diak, C.A. Sager, B. Bhattacharya, W.D. MacDonald, and M. Niewczas, Mater. Sci. Eng., A 496, 247–255 (2008).

    Article  Google Scholar 

  16. Y. Uematsu, K. Tokaji, and M. Matsumoto, Mater. Sci. Eng., A 517, 138–145 (2009).

    Article  Google Scholar 

  17. S. Jain, G. Aditya, J. Jayant, S.S. Singh, and K. Hariharan, Mater. Sci. Eng., A 684, 652–659 (2017).

    Article  Google Scholar 

  18. G.M. Naik, G. Gote, S. Narendranath, and S.S. Satheesh Kumar, Mater. Res. Express 5, 086513 (2018).

    Article  Google Scholar 

  19. M.C. Zhao, M. Liu, G.L. Song, and A. Atrens, Adv. Eng. Mater. 10, 93–103 (2008).

    Article  Google Scholar 

  20. H.J. Liao, X.F. Zhou, H.Z. Li, M. Deng, X.P. Liang, and R.M. Liu, Trans. Nonferrous Met. Soc. China 25, 3921–3927 (2015).

    Article  Google Scholar 

  21. L. Zheng, H. Nie, W. Liang, H. Wang, and Y. Wang, J. Magnes. Alloys 4, 115–122 (2016).

    Article  Google Scholar 

  22. M. Ben-Haroush, G. Ben-Hamu, D. Eliezer, and L. Wanger, Corros. Sci. 50, 1766–1778 (2008).

    Article  Google Scholar 

  23. M.C. Zhao, M. Liu, G.L. Song, and A. Atrens, Corros. Sci. 50, 1939–1953 (2008).

    Article  Google Scholar 

  24. O. Lunder, J.E. Lein, T.K. Aune, and K. Nisancioglu, Corrosion 45, 741–748 (1988).

    Article  Google Scholar 

  25. A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, and E. Matykina, Corros. Sci. 50, 823–834 (2008).

    Article  Google Scholar 

  26. G.L. Song and A. Atrens, Adv. Eng. Mater. 1, 11–13 (1999).

    Article  Google Scholar 

  27. G.L. Song, A. Atrens, and M. Dargusch, Corros. Sci. 41, 249–273 (1999).

    Article  Google Scholar 

  28. G.L. Song, A.L. Bowles, and D.H. Stjohn, Mater. Sci. Eng., A 366, 74–86 (2004).

    Article  Google Scholar 

  29. D. Zhao, Z. Wang, M. Zuo, and H. Geng, Mater. Des. 56, 589–593 (2014).

    Article  Google Scholar 

  30. A. Zindal, J. Jain, R. Prasad, S.S. Sing, R. Sarvesha, P. Cizek, and M.R. Barnett, Mater. Charact. 136, 175–182 (2018).

    Article  Google Scholar 

  31. W.J. Lai, Y.Y. Li, Y.F. Hsu, S. Trong, and W.H. Wang, J. Alloys Compd. 476, 118–124 (2009).

    Article  Google Scholar 

  32. Y. Tamura, Y. Kida, A. Suzuki, H. Soda, and A. McLean, Mater. Trans. 50, 579–587 (2009).

    Article  Google Scholar 

  33. R. Zeng, E. Han, and W. Ke, J. Mater. Sci. Technol. 23, 353–358 (2007).

    Google Scholar 

  34. ASTM G3-14, Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing, ASTM International, West Conshohocken (2014).

  35. ASTM G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM International, West Conshohocken (2015).

  36. H.Z. Ye and X.Y. Liu, J. Alloys Compd. 419, 54–60 (2006).

    Article  Google Scholar 

  37. A.A. Nayeb-Hashemi and J.B. Clark, Phase Diagram of Binary Magnesium Alloys (Materials Park, OH, USA: ASM International, 1988).

    Google Scholar 

  38. E. Aghion, L. Jan, L. Meshi, and J. Goldman, J. Biomed. Mater. Res., Part B 103, 1541–1548 (2014).

    Article  Google Scholar 

  39. C. Cheng, Q. Lan, A. Wang, Q. Le, F. Yang, and X. Li, Metals 8, 766 (2018).

    Article  Google Scholar 

  40. S.K. Guan, S.J. Zhu, L.G. Wang, Q. Yang, and W.B. Cao, Trans. Nonferrous Met. Soc. China 17, 1143–1151 (2007).

    Article  Google Scholar 

  41. P. Cao, M. Qian, and D.H. Stjohn, Scr. Mater. 54, 1853–1858 (2006).

    Article  Google Scholar 

  42. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. (UK: Chapman & Hall Book, 1992), p. 290.

    Book  Google Scholar 

  43. C. Kammerer, N. Kulkarni, R. Warmack, K. Perry, I. Belova, G. Murch, and Y. Sohn, Impurity Diffusion Coefficients of Al and Zn in Mg Determined from Solid-to-Solid Diffusion Couples, Magnesium Technology, ed. M. Alderman, M.V. Manuel, N. Hort, and N.R. Neelameggham (Cham: Springer, 2014), p. 505.

    Google Scholar 

  44. N.K. Kaustub and A.L. Alan, J. Phase Equilib. Diffus. 34, 104–115 (2013).

    Article  Google Scholar 

  45. G.L. Song, A. Atrens, X. Wu, and B. Zhang, Corros. Sci. 40, 1769–1791 (1998).

    Article  Google Scholar 

  46. G.M. Abady, N.H. Hilal, M. El-Rabiee, and W.A. Badawy, Electrochim. Acta 55, 6651–6658 (2010).

    Article  Google Scholar 

  47. C.R. Weber, G. Knornschild, and L.F.P. Dick, J. Braz. Chem. Soc. 14, 584–593 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. Warren Poole of the University of British Columbia for providing the as-cast AZ80 Mg alloy. The authors acknowledge financial support received from IIT Kanpur to carry out this work. The authors also acknowledge the facilities at Advanced Center for Materials Science (ACMS) and Advanced Imaging Center (AIC) at IIT Kanpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhanshu S. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadali, K., Dubey, D., Sarvesha, R. et al. Dissolution Kinetics of Mg17Al12 Eutectic Phase and Its Effect on Corrosion Behavior of As-Cast AZ80 Magnesium Alloy. JOM 71, 2209–2218 (2019). https://doi.org/10.1007/s11837-019-03470-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03470-3

Navigation