Skip to main content
Log in

Effect of Cu on the Creep Behavior of Cast Al-15Si-0.5Mg Alloy

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In the present article, the effect of Cu on the microstructure and creep properties of Al-15Si-0.5Mg cast alloy was studied by using optical microscopy, scanning electron microscopy, energy dispersion spectrometry and the impression creep test. The microstructure is changed considerably in the presence of copper. The number of the Cu-rich phases increased noticeably with rising Cu content. Formation of a dendritic structure of α(Al) and modification of the eutectic Si were the other effects of increasing the Cu amount. The results showed that creep properties of the alloy increase considerably with the Cu addition. Calculating the stress exponent (n) and creep activation energy (Q) revealed that pipe diffusion climb-controlled creep is the dominant creep mechanism of the main alloy. Although Cu had no effect on the dominant creep mechanism at the lower stress, it was changed to lattice diffusion climb-controlled dislocation creep with increasing stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.M. Miresmaeili, Disseration, Iranian University of Science and Technology, 2003.

  2. J.E. Gruzleski and B.M. Closset, The Treatment of Liquid Aluminium-Silicon Alloys (Des Plaines: American Foundrymen’s Society Inc, 1990).

    Google Scholar 

  3. D.K. Dwivedi, A. Sharma, and T.V. Rajan, Mater. Manuf. Process. 20, 777 (2005).

    Article  Google Scholar 

  4. C.L. Xu and Q.C. Jiang, Mater. Sci. Eng. A 437, 451 (2006).

    Article  Google Scholar 

  5. A.R. Farkoosh, X.G. Chen, and M. Pekguleryuz, Mater. Sci. Eng. A 627, 127 (2015).

    Article  Google Scholar 

  6. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D.L. Chen, J. Alloys Compd. 615, 1019 (2014).

    Article  Google Scholar 

  7. A.R. Farkoosh and M. Pekguleryuz, Mater. Sci. Eng. A 582, 248 (2013).

    Article  Google Scholar 

  8. A.R. Farkoosh, M. Javidani, M. Hoseini, D. Larouche, and M. Pekguleryuz, J. Alloys Compd. 551, 596 (2013).

    Article  Google Scholar 

  9. S. Spigarelli, E. Evangelista, and S. Cucchieri, Mater. Sci. Eng. A 387, 702 (2004).

    Article  Google Scholar 

  10. M. Zamani, Desertion, Jonkoping University, 2017.

  11. B. Nami, H. Razavi, S. Mirdamadi, S.G. Shabestari, and S.M. Miresmaeili, Metall. Mater. Trans. A 41, 1973 (2010).

    Article  Google Scholar 

  12. B. Kondori and R. Mahmudi, Mater. Sci. Eng. A 700, 438 (2017).

    Article  Google Scholar 

  13. D.H. Sastry, Mater. Sci. Eng. A 409, 67 (2005).

    Article  Google Scholar 

  14. S.M. Miresmaeili, S.G. Shabestari, and S.M.A. Boutorabi, Can. Metall. Q. 42, 245 (2003).

    Article  Google Scholar 

  15. N. Ponweiser and K.W. Richter, J. Alloys Compd. 512, 252 (2012).

    Article  Google Scholar 

  16. M. Yousefi, M. Dehnavi, and S.M. Miresmaeili, Metall. Mater. Eng. 21, 115 (2015).

    Article  Google Scholar 

  17. S.M. Miresmaeili, J. Campbell, S.G. Shabestari, and S.M.A. Boutorabi, Metall. Mater. Trans. A 36, 2341 (2005).

    Article  Google Scholar 

  18. S. Belmares-Perales and A.A. Zaldívar-Cadena, Mater. Sci. Eng. B 174, 191 (2010).

    Article  Google Scholar 

  19. X. Cao and J. Campbell, Metall. Mater. Trans. A 35, 1425 (2004).

    Article  Google Scholar 

  20. Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, and S. Valtierra, J. Mater. Sci. 38, 1203 (2003).

    Article  Google Scholar 

  21. S.G. Shabestari and H. Moemeni, J. Mater. Process. Technol. 153, 193 (2004).

    Article  Google Scholar 

  22. L. Lasa and J.M. Rodriguez-Ibabe, J. Mater. Sci. 39, 1343 (2004).

    Article  Google Scholar 

  23. E. Sjölander and S. Seifeddine, J. Mater. Process. Technol. 210, 1249 (2010).

    Article  Google Scholar 

  24. H. Khalilpour, S.M. Miresmaeili, and A. Baghani, Mater. Sci. Eng. A 652, 365 (2016).

    Article  Google Scholar 

  25. F. Naghdi, R. Mahmudi, J.Y. Kang, and H.S. Kim, Mater. Sci. Eng. A 696, 536 (2017).

    Article  Google Scholar 

  26. S.M. Miresmaeili and B. Nami, Mater. Des. 56, 286 (2014).

    Article  Google Scholar 

  27. F. Yang and J.C. Li, Mater. Sci. Eng. R 74, 233 (2013).

    Article  Google Scholar 

  28. B. Nami, H. Razavi, S.M. Miresmaeili, Sh. Mirdamadi, and S.G. Shabestari, Scr. Mater. 65, 221 (2011).

    Article  Google Scholar 

  29. A. Howie and P.R. Swann, Philos. Mag. 6, 1215 (1961).

    Article  Google Scholar 

  30. M.E. Kassner and M.T. Perez-Prado, Fundamentals of Creep in Metals and Alloys, 1st ed. (Amsterdam: Elsevier Science, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Mehdi Miresmaeili.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miresmaeili, S.M., Nami, B., Abbasi, R. et al. Effect of Cu on the Creep Behavior of Cast Al-15Si-0.5Mg Alloy. JOM 71, 2128–2135 (2019). https://doi.org/10.1007/s11837-019-03447-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03447-2

Navigation