Skip to main content

Advertisement

Log in

Novel Pathway to Prepare Mo Nanopowder via Hydrogen Reduction of MoO2 Containing Mo Nanoseeds Produced by Reducing MoO3 with Carbon Black

  • Design, Development, and Manufacturing of Refractory Metals & Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A novel pathway for the preparation of nanoscale Mo powder has been developed. Ultrafine MoO2 powder containing different amounts of Mo nanoscale nuclei was synthesized via temperature-programed reduction of commercial MoO3 with carbon black at C/MoO3 molar ratio of 0.5–1.5 and final temperature of 920°C, followed by hydrogen reduction at 750–900°C. In the absence of Mo nanoseeds, the Mo powder retained its original morphology and particle size (several hundred nanometers). However, the presence of Mo nanoseeds resulted in successful preparation of Mo nanopowder with residual carbon content as low as 0.016%. This method could potentially be extended to large-scale industrial production of nanoscale Mo powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.S. Kim, H.G. Kim, D.G. Kim, S.T. Oh, M.J. Suk, and Y. Do Kim, J. Alloys Compd. 469, 401 (2009).

    Article  Google Scholar 

  2. G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, Nat. Mater. 12, 344 (2013).

    Article  Google Scholar 

  3. G.D. Sun, G.-H. Zhang, and K.-C. Chou, Int. J. Refract. Met. Hard Mater. 78, 68 (2019).

    Article  Google Scholar 

  4. G.D. Sun, G.H. Zhang, S.Q. Jiao, and K.C. Chou, J. Phys. Chem. C 122, 10231 (2018).

    Article  Google Scholar 

  5. Z. Huang, J. Liu, X. Deng, H. Zhang, L. Lu, Z. Hou, and S. Zhang, Int. J. Refract. Met. Hard Mater 54, 315 (2016).

    Article  Google Scholar 

  6. J. Dang, G.H. Zhang, K.C. Chou, R.G. Reddy, Y. He, and Y. Sun, Int. J. Refract. Met. Hard Mater. 41, 216 (2013).

    Article  Google Scholar 

  7. J. Bolitschek, S. Luidold, and M. O’Sullivan, Int. J. Refract. Met. Hard Mater. 71, 325 (2018).

    Article  Google Scholar 

  8. W.V. Schulmeyer and H.M. Ortner, Int. J. Refract. Met. Hard Mater. 20, 261 (2002).

    Article  Google Scholar 

  9. P. Garg, S.J. Park, and R.M. German, Int. J. Refract. Met. Hard Mater. 25, 16 (2007).

    Article  Google Scholar 

  10. G.S. Kim, Y.J. Lee, D.G. Kim, and Y.D. Kim, J. Alloys Compd. 454, 327 (2008).

    Article  Google Scholar 

  11. Y. Kim, Powder Technol. 186, 213 (2008).

    Article  Google Scholar 

  12. C.W. Won, H.H. Nersisyan, H.I. Won, and J.H. Lee, Curr. Opin. Solid State Mater. Sci. 14, 53 (2010).

    Article  Google Scholar 

  13. H. Wang, Z.Z. Fang, K.S. Hwang, H. Zhang, and D. Siddle, Int. J. Refract. Met. Hard Mater. 28, 312 (2010).

    Article  Google Scholar 

  14. Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma, Nature 419, 912 (2002).

    Article  Google Scholar 

  15. M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mater Sci. 51, 427 (2006).

    Article  Google Scholar 

  16. C. Ren, M. Koopman, Z.Z. Fang, H. Zhang, and B.V. Devener, Int. J. Refract. Met. Hard Mater. 65, 2 (2017).

    Article  Google Scholar 

  17. Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, and H.Y. Sohn, Int. J. Refract. Met. Hard Mater. 27, 288 (2009).

    Article  Google Scholar 

  18. G.D. Sun, K.F. Wang, C.M. Song, and G.H. Zhang, Int. J. Refract. Met. Hard Mater. 78, 100 (2019).

    Article  Google Scholar 

  19. C. Ren, Z.Z. Fang, H. Zhang, and M. Koopman, Int. J. Refract. Met. Hard Mater. 61, 273 (2016).

    Article  Google Scholar 

  20. A. Heidarpour, F. Karimzadeh, and M.H. Enayati, J. Alloys Compd. 477, 692 (2009).

    Article  Google Scholar 

  21. H.H. Nersisyan, J.H. Lee, and C.W. Won, Mater. Chem. Phys. 89, 283 (2005).

    Article  Google Scholar 

  22. B. Liu, H. Gu, and Q. Chen, Mater. Chem. Phys. 59, 204 (1999).

    Article  Google Scholar 

  23. L. Wang, G.-H. Zhang, and K.C. Chou, Int. J. Refract. Met. Hard Mater. 59, 100 (2016).

    Article  Google Scholar 

  24. Y. Shen, J. Mater. Chem. A 3, 13114 (2015).

    Article  Google Scholar 

  25. J. Dang, G.H. Zhang, and K.C. Chou, High Temp. Mater. Processes. 34, 417 (2015).

    Article  Google Scholar 

  26. M. Lenz and R. Gruehn, Chem. Rev. 29, 2967 (1998).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 51734002 and 51725401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, GD., Zhang, GH. Novel Pathway to Prepare Mo Nanopowder via Hydrogen Reduction of MoO2 Containing Mo Nanoseeds Produced by Reducing MoO3 with Carbon Black. JOM 72, 347–353 (2020). https://doi.org/10.1007/s11837-019-03445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03445-4

Navigation