Skip to main content
Log in

Synthesis of 3D Hierarchical Rose-Like Bi2WO6 Superstructure with Enhanced Visible-Light-Induced Photocatalytic Performance

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A novel three-dimensional (3D) hierarchical rose-like Bi2WO6 (BWR) superstructure for use as an efficient visible-driven photocatalyst has been fabricated using a facile template-free hydrothermal strategy to integrate sequentially two-dimensional (2D) nanoplates into the 3D hierarchical structure. The formation mechanism was briefly analyzed. The 3D hierarchical superstructure facilitated migration and separation of photogenerated charge carriers due to the stacked hierarchical subunits, increased surface area for pollution adsorption, and more exposed active sites for surface redox catalysis. Benefiting from its excellent structural features, the BWR exhibited enhanced performance for photodegradation of RhB and photooxidation of NO under visible-light irradiation compared with irregular Bi2WO6. In addition, a trapping experiment was conducted to reveal which active species are involved in the photodegradation of RhB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Jing, X. Qian, F. Zhaochi, L. Meijun, and L. Can, Angew. Chem. Int. Ed. 47, 1766 (2008).

    Article  Google Scholar 

  2. F. Meng, Z. Hong, J. Arndt, M. Li, M. Zhi, F. Yang, and N. Wu, Nano Res. 5, 213 (2012).

    Article  Google Scholar 

  3. N. Serpone, D. Lawless, and R. Khairutdinov, J. Phys. Chem. C 99, 16646 (1995).

    Article  Google Scholar 

  4. A. Wold and A. Wold, Chem. Mater. 5, 280 (1993).

    Article  Google Scholar 

  5. J. Low, S. Qiu, D. Xu, C. Jiang, and B. Cheng, Appl. Surf. Sci. 434, 423 (2018).

    Article  Google Scholar 

  6. K. Hashimoto, H. Irie, and A. Fujishima, Jpn. J. Appl. Phys. 44, 8269 (2005).

    Article  Google Scholar 

  7. T. Meißner, F. Eisenbeiß, and B. Jastorff, Science 293, 269 (2001).

    Article  Google Scholar 

  8. H. Bai, K.S.Y. Kwan, Z. Liu, X. Song, S.S. Lee, and D.D. Sun, Appl. Catal. B 129, 294 (2013).

    Article  Google Scholar 

  9. M. Zhu, C. Zhai, L. Qiu, L. Cheng, A.S. Paton, Y. Du, and M.C. Goh, ACS Sustain. Chem. 3, 3123 (2015).

    Article  Google Scholar 

  10. N.A. Mcdowell, K.S. Knight, and L. Philip, Chem. Eur. J. 12, 1493 (2010).

    Article  Google Scholar 

  11. H.W. Newkirk, P. Quadflieg, J. Liebertz, and A. Kockel, Ferroelectrics 4, 51 (1972).

    Article  Google Scholar 

  12. F. Hongbo, P. Chengshi, Y. Wenqing, and Z. Yongfa, J. Phys. Chem. B 109, 22432 (2005).

    Article  Google Scholar 

  13. H. Fu, C. Pan, W. Yao, and Y. Zhu, J. Phys. Chem. B 109, 22432 (2005).

    Article  Google Scholar 

  14. Y. Shi, S. Feng, and C. Cao, Mater. Lett. 44, 215 (2000).

    Article  Google Scholar 

  15. W. Chunying, Z. Hao, L. Fang, and Z. Lingyan, Environ. Sci. Technol. 44, 6843 (2010).

    Article  Google Scholar 

  16. D. Xiao-Jun, L. Yong-Song, Z. Wei-Dong, and F. Shao-Yun, Dalton Trans. 39, 3426 (2010).

    Article  Google Scholar 

  17. P. Sungho, L. Jung-Hyurk, C. Sung-Wook, and C.A. Mirkin, Science 303, 348 (2004).

    Article  Google Scholar 

  18. Z. Tierui, D. Wenjun, K.-B. Mary, K. Sanjit, N. Roland, and T.Z. Ryan, J. Am. Chem. Soc. 128, 10960 (2006).

    Article  Google Scholar 

  19. T. Hua, O. Shuxin, B. Yingpu, U. Naoto, O. Mitsutake, and Y. Jinhua, Adv. Mater. 24, 229 (2012).

    Article  Google Scholar 

  20. J. Yu, J. Xiong, B. Cheng, Y. Yu, and J. Wang, J. Solid State Chem. 178, 1968 (2005).

    Article  Google Scholar 

  21. S. Zhang, J. Solid State Chem. 179, 62 (2006).

    Article  Google Scholar 

  22. J. Wu‡, F. Duan, Y. Zheng, and Y. Xie, J. Phys. Chem. C 111, 12866 (2007).

    Article  Google Scholar 

  23. L. Zhang, W. Wang, Z. Chen, L. Zhou, H. Xu, and W. Zhu, J. Mater. Chem. 17, 2526 (2007).

    Article  Google Scholar 

  24. C.S. Xu, F.Z. Yi, M. Rong, Y.Z. Yao, and Y.Y. Hao, J. Hazard. Mater. 192, 186 (2011).

    Article  Google Scholar 

  25. C.Z. And and Y. Zhu, Chem. Mater. 17, 3537 (2005).

    Article  Google Scholar 

  26. F. Dong, W. Zhao, Z. Wu, and S. Guo, J. Hazard. Mater. 162, 763 (2008).

    Article  Google Scholar 

  27. P. Jong Hyeok, K. Sungwook, and A.J. Bard, Nano Lett. 6, 24 (2006).

    Article  Google Scholar 

  28. J.G. Yu, Y.R. Su, and B. Cheng, Adv. Funct. Mater. 17, 1984 (2010).

    Article  Google Scholar 

  29. W. Xinchen, J.C. Yu, H. Chunman, H. Yidong, and F. Xianzhi, Langmuir 21, 2552 (2005).

    Article  Google Scholar 

  30. M.A. Butler, J. Appl. Phys. 48, 1914 (1977).

    Article  Google Scholar 

  31. Y. Bian, W. Zeng, M. He, Y. Ma, Y. Liu, Y. Kong, and J. Pan, J. Colloid Interface Sci. 534, 20 (2019).

    Article  Google Scholar 

  32. H. Zhou, Z. Wen, J. Liu, J. Ke, X. Duan, and S. Wang, Appl. Catal. B 242, 76 (2019).

    Article  Google Scholar 

  33. Y. Liu, B. Wei, L. Xu, H. Gao, and M. Zhang, ChemCatChem 7, 4076 (2015).

    Article  Google Scholar 

  34. S.O. Alfaro and M.D.L. Cruz, Appl. Catal. A 383, 128 (2010).

    Article  Google Scholar 

  35. S. Zeng, P. Kar, U.K. Thakur, and K. Shankar, Nanotechnology 29, 052001 (2018).

    Article  Google Scholar 

  36. H. Cheng, B. Huang, Y. Liu, Z. Wang, X. Qin, X. Zhang, and Y. Dai, Chem. Commun. 48, 9729 (2012).

    Article  Google Scholar 

  37. Z.A. Huang, Q. Sun, K. Lv, Z. Zhang, M. Li, and B. Li, Appl. Catal. B 164, 420 (2015).

    Article  Google Scholar 

  38. G. Jiang, Z. Wei, H. Chen, X. Du, L. Li, Y. Liu, Q. Huang, and W. Chen, RSC Adv. 5, 30433 (2015).

    Article  Google Scholar 

  39. C. Tang, E. Liu, J. Wan, X. Hu, and J. Fan, Appl. Catal. B 181, 707 (2016).

    Article  Google Scholar 

  40. C. Li, G. Chen, J. Sun, J. Rao, Z. Han, Y. Hu, W. Xing, and C. Zhang, Appl. Catal. B 188, 39 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Project of Chinese National Programs for Research and Development (2016YFC0203800), the National Natural Science Foundation of China (51578288), Industry–Academia Cooperation Innovation Fund Projects of Jiangsu Province (BY2016004-09), Jiangsu Province Scientific and Technological Achievements into a Special Fund Project (BA2015062, BA2016055 and BA2017095), and Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0446).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shule Zhang or Qin Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zeng, Y., Zhang, S. et al. Synthesis of 3D Hierarchical Rose-Like Bi2WO6 Superstructure with Enhanced Visible-Light-Induced Photocatalytic Performance. JOM 71, 2112–2119 (2019). https://doi.org/10.1007/s11837-019-03438-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03438-3

Navigation