Skip to main content
Log in

Significant Mechanical Softening of an Al-Y-Ni-Co Metallic Glass on Cold and Hot Rolling

  • Microstructure Evolution During Deformation Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Deformation-induced crystallization behavior of the Al85Y8Ni5Co2 metallic glassy samples subjected to cold and hot rolling with 35% size reduction is studied in the present work. The formation of primary nanoscale α-Al particles is observed after rolling at 473 K, which is below the glass-transition and crystallization temperature. It is found that contrary to thermal crystallization on heating below the glass-transition temperature, no intermetallic compounds but only α-Al nanoparticles were formed during the deformation-induced crystallization. The behavior is discussed in connection with the excess volume generated upon deformation. Structural changes are studied by x-ray diffractometry and transmission electron microscopy. Variation in the Vickers microhardness is also detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.L. Greer, Science 267, 1947 (1995).

    Article  Google Scholar 

  2. A. Inoue and H. Kimura, J. Light Met. 1, 31 (2001).

    Article  Google Scholar 

  3. A. Inoue, K. Ohtera, A.P. Tsai, and T. Masumoto, Jpn. J. Appl. Phys. 27, L1579 (1988).

    Article  Google Scholar 

  4. Y. Shen and J.H. Perepezko, J. Alloys Compd. 707, 3 (2017).

    Article  Google Scholar 

  5. A. Inoue, K. Ohtera, A.P. Tsai, and T. Masumoto, Jpn. J. Appl. Phys. 27, L736 (1988).

    Article  Google Scholar 

  6. Y. He, S.J. Poon, and G.J. Shiflet, Science 241, 1640 (1988).

    Article  Google Scholar 

  7. W.S. Sanders, J.S. Warner, and D.B. Miracle, Intermetallics 14, 348 (2006).

    Article  Google Scholar 

  8. A. Inoue, N. Matsumoto, and T. Masumoto, Mater. Trans. JIM 31, 493 (1990).

    Article  Google Scholar 

  9. W. Kim, H.S. Oh, and E.S. Park, Intermetallics 91, 8 (2017).

    Article  Google Scholar 

  10. A. Inoue, Prog. Mater. Sci. 43, 365 (1998).

    Article  Google Scholar 

  11. J.Q. Wang, Y.H. Liu, S. Imhoff, N. Chen, D.V. Louzguine-Luzgin, A. Takeuchi, M.W. Chen, H. Kato, J.H. Perepezko, and A. Inoue, Intermetallics 29, 35 (2012).

    Article  Google Scholar 

  12. B.J. Yang, J.H. Yao, J. Zhang, H.W. Yang, J.Q. Wang, and E. Ma, Scr. Mater. 61, 423 (2009).

    Article  Google Scholar 

  13. B.A. Sun, M.X. Pan, D.Q. Zhao, W.H. Wang, X.K. Xi, M.T. Sandor, and Y. Wu, Scr. Mater. 59, 1159 (2008).

    Article  Google Scholar 

  14. B.J. Yang, W.Y. Lu, J.L. Zhang, J.Q. Wang, and E. Ma, Sci. Rep. 7, 11053 (2017).

    Article  Google Scholar 

  15. A. Inoue, K. Ohtera, A.P. Tsai, and T. Masumoto, Jpn. J. Appl. Phys. 27, L479 (1988).

    Article  Google Scholar 

  16. G.J. Shiflet, Y. He, and S.J. Poon, J. Appl. Phys. 64, 6863 (1988).

    Article  Google Scholar 

  17. D.V. Louzguine and A. Inoue, Mater. Sci. Forum 386–388, 117 (2002).

    Article  Google Scholar 

  18. P. Gargarella, M.F. de Oliveira, C.S. Kiminami, S. Pauly, U. Kühn, C. Bolfarini, W.J. Botta, and J. Eckert, J. Appl. Phys. 109, 093509 (2011).

    Article  Google Scholar 

  19. D.V. Louzguine and A. Inoue, J. Mater. Res. 17, 1014 (2002).

    Article  Google Scholar 

  20. Y.E. Kalay, I. Kalay, J. Hwang, P.M. Voyles, and M.J. Kramer, Acta Mater. 60, 994 (2012).

    Article  Google Scholar 

  21. J. Antonowicz, J. Mater. Sci. 45, 5040 (2010).

    Article  Google Scholar 

  22. M. Gogebakan, P.J. Warren, and B. Cantor, Mater. Sci. Eng. A 226–228, 168 (1997).

    Article  Google Scholar 

  23. M. Calin, A. Rudiger, and U. Koester, J. Metastable Nanocrystalline Mater. 8, 359 (2000).

    Article  Google Scholar 

  24. N. Bassim, C.S. Kiminami, and M.J. Kaufman, J. Non-Cryst. Solids 273, 271 (2000).

    Google Scholar 

  25. A.I. Bazlov, N. Yu Tabachkova, V.S. Zolotorevsky, and D.V. Louzguine-Luzgin, Intermetallics 94, 192 (2018).

    Article  Google Scholar 

  26. A.S. Aronin, G.E. Abrosimova, and Y.V. Kir’yanov, Phys. Solid State 43, 2003 (2001).

    Article  Google Scholar 

  27. R.I. Wu, G. Wilde, and J.H. Perepezko, Mater. Sci. Eng. A Struct. 301, 12 (2001).

    Article  Google Scholar 

  28. E. Pershina, D. Matveev, G. Abrosimova, and A. Aronin, Mater. Charact. 133, 87–93 (2017).

    Article  Google Scholar 

  29. G.E. Abrosimova and A.S. Aronin, Phys. Solid State 44, 1003 (2002).

    Article  Google Scholar 

  30. A.R. Yavari, W.J. Botta Filho, C.A.D. Rodrigues, C. Cardoso, and R.Z. Valiev, Scr. Mater. 46, 711 (2002).

    Article  Google Scholar 

  31. A. Mukhopadhyay, K.E. Spence, L.Q. Xing, W.E. Buhro, and K.F. Kelton, Philos. Mag. 87, 281 (2007).

    Article  Google Scholar 

  32. K. Hono, Y. Zhang, A.P. Tsai, A. Inoue, and T. Sakurai, Scr. Mater. 32, 191 (1995).

    Article  Google Scholar 

  33. W.F. Gale and T.C. Totemeier, eds., Smithells Metals Reference Book, 8th ed. (Oxford: Elsevier Butterworth-Heinemann Ltd., 2004), pp. 11–57.

    Google Scholar 

  34. Y.H. Kim, A. Inoue, and T. Masumoto, Mater. Trans. JIM 32, 599 (1991).

    Article  Google Scholar 

  35. D.V. Louzguine-Luzgin, Met. Sci. Heat Treat. 53, 472 (2012).

    Article  Google Scholar 

  36. J.H. Perepezko, R.J. Hebert, and W.S. Tong, Intermetallics 10, 1079 (2002).

    Article  Google Scholar 

  37. D.V. Louzguine and A. Inoue, Mater. Lett. 54, 75 (2002).

    Article  Google Scholar 

  38. J.Q. Wang, H.W. Zhang, X.J. Gu, K. Lu, F. Sommer, and E.J. Mittemeijer, Appl. Phys. Lett. 80, 3319 (2002).

    Article  Google Scholar 

  39. D.V. Louzguine-Luzgin and A. Inoue, J. Alloys Compd. 399, 78 (2005).

    Article  Google Scholar 

  40. D.V. Louzguine and A. Inoue, J. Light Met. 1, 105 (2001).

    Article  Google Scholar 

  41. D.V. Louzguine and A. Inoue, Appl. Phys. Lett. 78, 3061 (2001).

    Article  Google Scholar 

  42. D.V. Louzguine and A. Inoue, J Non-Cryst. Sol. 311, 281 (2002).

    Article  Google Scholar 

  43. F.Q. Guo, S.J. Poon, G.J. Shiflet, in Supercooled Liquids, Glass Transition, and Bulk Metallic Glasses, ed. by T. Egami, A.L. Greer, A. Inoue, S. Ranganathan. MRS Symposium Proceedings, vol. 754, p. CC11.6 (2003).

  44. D.V. Louzguine-Luzgin and A. Inoue, J. Non-Cryst. Solids 352, 390 (2006).

    Article  Google Scholar 

  45. J.B. Fogagnolo, R.D. Sá Lisboa, C. Bolfarini, C.S. Kiminami, and W.J. Botta, Philos. Mag. Lett. 88, 863 (2008).

    Article  Google Scholar 

  46. G. Abrosimova and A. Aronin, Nanocrystal formation in Al- and Ti-based amorphous alloys at deformation. J. Alloy. Compd. 747, 26–30 (2018).

    Article  Google Scholar 

  47. H.W. Bi, A. Inoue, F.F. Han, Y. Han, F.L. Kong, S.L. Zhu, E. Shalaan, F. Al-Marzouki, and A.L. Greer, Acta Mater. 47, 90 (2018).

    Article  Google Scholar 

  48. A. Aronin, D. Matveev, E. Pershina, V. Tkatch, and G. Abrosimova, J. Alloys Compd. 715, 176 (2017).

    Article  Google Scholar 

  49. A.S. Aronin and D.V. Louzguine-Luzgin, Mech. Mater. 113, 19 (2017).

    Article  Google Scholar 

  50. A.L. Greer, Y.Q. Cheng, and E. Ma, Mater. Sci. Eng. R 74, 71 (2013).

    Article  Google Scholar 

  51. Y. He, G.J. Shiflet, and S.J. Poon, Acta Metall. Mater. 43, 83 (1995).

    Article  Google Scholar 

  52. H. Chen, Y. He, G.J. Shiflet, and S.J. Poon, Nature 367, 541 (1994).

    Article  Google Scholar 

  53. W.H. Jiang, F.E. Pinkerton, and M. Atzmon, J. Appl. Phys. 93, 9287 (2003).

    Article  Google Scholar 

  54. W.H. Jiang and M. Atzmon, Acta Mater. 51, 4095 (2003).

    Article  Google Scholar 

  55. A.A. Csontos and G.J. Shiflet, Nanostruct. Mater. 9, 281 (1997).

    Article  Google Scholar 

  56. J.-J. Kim, Y. Choi, S. Suresh, and A.S. Argon, Science 295, 654 (2002).

    Google Scholar 

  57. W.H. Jiang, F.E. Pinkerton, and M. Atzmon, Scr. Mater. 48, 1195 (2003).

    Article  Google Scholar 

  58. J.B. Fogagnolo, R.D. Sá Lisboa, C. Bolfarini, C.S. Kiminami, and W.J. Botta, Philos. Mag. Lett. 88, 863 (2008).

    Article  Google Scholar 

  59. P. Rizzi, A. Habib, A. Castellero, and L. Battezzati, Intermetallics 33, 38 (2013).

    Article  Google Scholar 

  60. Z. Yan, K.K. Song, Y. Hu, F. Dai, Z.B. Chu, and J. Eckert, Sci. Rep. 6, 19358 (2016).

    Article  Google Scholar 

  61. Y.X. Zhuang, J.Z. Jiang, T.J. Zhou, H. Rasmussen, L. Gerward, M. Mezouar, W. Crichton, and A. Inoue, Appl. Phys. Lett. 77, 4133 (2000).

    Article  Google Scholar 

  62. F. Ye and K. Lu, Phys. Rev. B 60, 7018 (1999).

    Article  Google Scholar 

  63. F. Ye and K. Lu, Acta Mater. 47, 2449 (1999).

    Article  Google Scholar 

  64. A. Inoue, H.M. Kimura, K. Kita, in New Horizons in Quasicrystals, ed. A.I. Goldman, D.J. Sordelet, P.A. Thiel, J.M. Dubois (World Scientific, Singapore, 1997), p 256.

  65. A.L. Greer, Mater. Sci. Eng. A-Struct 304–306, 68 (2001).

    Article  Google Scholar 

  66. T. Nasu, S. Kanazawa, S. Hayashizaki, S.X. Zhao, S. Takahashi, T. Usuki, and Y. Kameda, Mater. Trans. 56, 249 (2015).

    Article  Google Scholar 

  67. Y. Zhang, W.H. Wang, and A.L. Greer, Nat. Mater. 5, 857 (2006).

    Article  Google Scholar 

  68. W. Dmowski, Y. Yokoyama, A. Chuang, Y. Ren, M. Umemoto, K. Tsuchiya, A. Inoue, and T. Egami, Acta Mater. 58, 429 (2010).

    Article  Google Scholar 

  69. E.V. Boltynjuk, D.V. Gunderov, E.V. Ubyivovk, A.V. Lukianov, A.M. Kshumanev, A. Bednarz, and R.Z. Valiev, AIP Conf. Proc. 1748, 030006 (2016).

    Article  Google Scholar 

  70. A.M. Glezer, M.R. Plotnikova, R.V. Sundeev, N.A. Shurygina, and B. Russ, Acad. Sci. Phys. 77, 1391 (2013).

    Google Scholar 

  71. G. Abrosimova and A. Aronin, Mater. Lett. 206, 64 (2017).

    Article  Google Scholar 

  72. D.V. Louzguine-Luzgin, M. Fukuhara, and A. Inoue, Acta Mater. 55, 1009–1015 (2007).

    Article  Google Scholar 

  73. S.S. Joshi, P. Samimi, I. Ghamarian, S. Katakam, P.C. Collins, and N.B. Dahotre, J. Appl. Phys. 118, 164904 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Ministry of Education and Science of the Russian Federation in the framework of the Increase Competitiveness Program of NUST “MISiS” (Nos. K2-2014-013 and K2-2017-089) and the state task of ISSP RAS (partial) with the partial support of the RFBR (grant 19-03-00355).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Bazlov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolotorevsky, V.S., Bazlov, A.I., Igrevskaya, A.G. et al. Significant Mechanical Softening of an Al-Y-Ni-Co Metallic Glass on Cold and Hot Rolling. JOM 71, 4079–4085 (2019). https://doi.org/10.1007/s11837-019-03430-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03430-x

Navigation