Skip to main content
Log in

Highly Ordered Good Crystalline ZnO-Doped WO3 Thin Films Suitable for Optoelectronic Applications

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Highly ordered ZnO-doped WO3 thin films with good crystalline quality are prepared using radio frequency magnetron sputtering technique, and its morphological and structural properties are studied using various characterization tools such as field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction technique, micro-Raman spectroscopy, and x-ray photoelectron spectroscopy. Morphological analysis shows a smooth surface for pure film, whereas the ZnO-doped films presents a dense distribution of grains of larger sizes with well-defined grain boundary. X-ray diffraction studies reveal the enhancement of crystalline quality of the films with increase in ZnO doping concentration up to 5 wt.%, beyond which the crystalline quality gets deteriorated. A phase modification from a single monoclinic WO3 phase to mixed monoclinic WO3 and W18O49 phases is observed for films with higher ZnO doping concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Sivakumar, A. Moses Ezhil Raj, B. Subramanian, M. Jayachandran, D.C. Trivedi, and C. Sanjeeviraja, Mater. Res. Bull. 39, 1479 (2004).

    Article  Google Scholar 

  2. C.V. Ramana, S. Utsunomiya, R.C. Ewing, C.M. Julien, and U. Becker, J. Phys. Chem. B 110, 10430 (2006).

    Article  Google Scholar 

  3. T. Pauporte, M.C. Bernard, Y. Soldo-Olivier, and R. Faure, J. Electrochem. Soc. 151, 21 (2004).

    Article  Google Scholar 

  4. M. SasaniGhamsari, S. Radiman, M. Azmi Abdul Hamid, S. Mahshid, and Sh. Rahmani, Mater. Lett. 92, 287 (2013).

    Article  Google Scholar 

  5. Y.M. Hunge, M.A. Mahadik, S.S. Kumbhar, V.S. Mohite, K.Y. Rajpure, N.G. Deshpande, A.V. Moholkar, and C.H. Bhosale, Ceram. Int. 42, 789 (2016).

    Article  Google Scholar 

  6. R. Jolly Bose, N. Illyasukutty, K.S. Tan, R.S. Rawat, M. Vadakke Matham, H. Kohler, and V.P. Mahadevan Pillai, Appl. Surf. Sci. 440, 320 (2018).

    Article  Google Scholar 

  7. A. Rougier, F. Portemer, A. Quede, and M. El Marssi, Appl. Surf. Sci. 153, 1 (1999).

    Article  Google Scholar 

  8. A. Al-Mohammad, Phys. Stat. Sol. (A) 205, 2880 (2008).

    Article  Google Scholar 

  9. P. TaÈgtstroÈm and U. Jansson, Thin Solid Films 352, 107 (1999).

    Article  Google Scholar 

  10. R. Jolly Bose, V.S. Kavitha, C. Sudarsanakumar, and V.P. Mahadevan Pillai, Appl. Surf. Sci. 379, 505 (2016).

    Article  Google Scholar 

  11. J. Su, X. Feng, J.D. Sloppy, L. Guo, and C.A. Grimes, Nano Lett. 11, 203 (2011).

    Article  Google Scholar 

  12. S. Poongodi, P. Suresh Kumar, D. Mangalaraj, N. Ponpandian, P. Meena, Y. Masuda, and C. Lee, J. Alloys Compd. 719, 71 (2017).

    Article  Google Scholar 

  13. B. Simona and P.V. Ashrit, Solid State Ionics 158, 187 (2003).

    Article  Google Scholar 

  14. Z. Jiao, J. Wang, L. Ke, X. Wei Sun, and H. Volkan Demir, ACS Appl. Mater. Interfaces. 3, 229 (2011).

    Article  Google Scholar 

  15. R. Liu, Y. Lin, L.-Y. Chou, S.W. Sheehan, W. He, F. Zhang, H.J.M. Hou, and D. Wang, Angew. Chem. Int. Ed. 50, 499 (2011).

    Article  Google Scholar 

  16. K.J. Lethy, D. Beena, V.P. Mahadevan Pillai, and K.A. Suresh, J. Nanosci. Nanotechnol. 9, 5335 (2009).

    Article  Google Scholar 

  17. K.J. Lethy, D. Beena, R. Vinodkumar, V.P. Mahadevanpillai, V. Ganesan, V. Sathe, and D.M. Phase, Appl. Phys. A 91, 637 (2008).

    Article  Google Scholar 

  18. S.R. Chalana, R. Vinodkumar, I. Navas, V. Ganesan, and V.P. Mahadevan Pillai, J. Lumin. 132, 944 (2012).

    Article  Google Scholar 

  19. J.A. Bearden and A.F. Burr, Rev. Mod. Phys. 39, 125 (1967).

    Article  Google Scholar 

  20. O. Stenzel and M. Ohlidal, Optical Characterization of Thin Solid Films (Switzerland: Springer International, 2018), p. 24.

    Book  Google Scholar 

  21. R. Jolly Bose, R. Vinod Kumar, S.K. Sudheer, V.R. Reddy, V. Ganesan, and V.P. Mahadevan Pillai, J. Appl. Phys. 112, 114311 (2012).

    Article  Google Scholar 

  22. G. Li, X. Zhu, X. Tang, W. Song, Z. Yang, J. Dai, Y. Sun, X. Pan, and S. Dai, J. Alloys Compd. 509, 4816 (2011).

    Article  Google Scholar 

  23. A. Van der Drift, Philips Res. Rep. 22, 267 (1967).

    Google Scholar 

  24. M. Öztas and M. Bedir, Thin Solid Films 516, 1703 (2008).

    Article  Google Scholar 

  25. L. El Mir, Z. Ben Ayadi, M. Saadoun, K. Djessas, H.J. von Bardeleben, and S. Alaya, Appl. Surf. Sci. 254, 570 (2007).

    Article  Google Scholar 

  26. S.R. Chalana and V.P. Mahadevan Pillai, Appl. Surf. Sci. 440, 1181 (2018).

    Article  Google Scholar 

  27. B.D. Cullity, Elements of X-ray Diffraction (Boston, MA: Addison-Wesley, 1956), p. 99.

    Google Scholar 

  28. R.W. Kelsall, I.W. Hamley, and M. Geoghegan, Nanoscale Science and Technology (New York: Wiley, 2006), p. 265.

    Google Scholar 

  29. S.K. Neogi, S. Chattopadhyay, A. Banerjee, S. Bandyopadhyay, A. Sarkar, and R. Kumar, J. Phys. Condens. Matter 23, 205801 (2011).

    Article  Google Scholar 

  30. P. Bindu and S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014).

    Article  Google Scholar 

  31. G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).

    Article  Google Scholar 

  32. S.B. Qadri, J.P. Yang, E.F. Skelton, and B.R. Ratna, Appl. Phys. Lett. 70, 1020 (1997).

    Article  Google Scholar 

  33. X.F. Cheng, W.H. Leng, D.P. Liu, J.Q. Zhang, and C.N. Cao, Chemosphere 68, 1976 (2007).

    Article  Google Scholar 

  34. A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).

    Article  Google Scholar 

  35. B. Panigrahy, M. Aslam, and D. Bahadur, J. Phys. Chem. C 114, 11758 (2010).

    Article  Google Scholar 

  36. N. Illyaskutty, S. Sreedhar, H. Kohler, R. Philip, V. Kumar Rajan, and V.P. Mahadevan Pillai, J. Phys. Chem. C 117, 7818 (2013).

    Article  Google Scholar 

  37. R. Sreeja Sreedharan, R. Reshmi Krishnan, R. Jolly Bose, V.S. Kavitha, S. Suresh, R. Vinodkumar, S.K. Sudheer, and V.P. Mahadevan Pillai, J. Lumin. 184, 273 (2017).

    Article  Google Scholar 

  38. T.B. Hur, Y.H. Hwang, H.K. Kim, and I.J. Lee, J. Appl. Phys. 99, 064308 (2006).

    Article  Google Scholar 

  39. G. Li and Z. Jian-Min, Chin. Phys. B 18, 4536 (2009).

    Article  Google Scholar 

  40. E. Salje, Acta Cryst. A 31, 360 (1975).

    Article  Google Scholar 

  41. V. Yakabanov and V.F. Chuvaev, Russ. J. Phys. Chem. 38, 717 (1964).

    Google Scholar 

  42. I.R. Beattie and T.R. Gilson, J. Chem. Soc. (A) 2322 (1969).

  43. J. Díaz-Reyes, R. Castillo-Ojeda, M. Galván-Arellano, and O. Zaca-Moran, Adv. Condens. Matter Phys. 2013, 1 (2013).

    Article  Google Scholar 

  44. O. Pyper, A. Kaschner, and C. Thomsen, Sol. Energy Mater. Sol. Cells 71, 511 (2002).

    Article  Google Scholar 

  45. M. Breedon, P. Spizzirri, M. Taylor, J. Plessis, D. McCulloch, J. Zhu, L. Yu, Z. Hu, C. Rix, W. Wlodarski, and K. Kalantar-Zadeh, Cryst. Growth Des. 10, 430 (2010).

    Article  Google Scholar 

  46. G. Fang, Z. Liu, and K.L. Yao, J. Phys. D Appl. Phys. 34, 2260 (2001).

    Article  Google Scholar 

  47. K.J. Lethy, D. Beena, V.P. Mahadevan Pillai, and V. Ganesan, J. Appl. Phys. 104, 033515 (2008).

    Article  Google Scholar 

  48. N. Naseri, R. Azimirad, O. Akhavan, and A.Z. Moshfegh, Thin Solid Films 518, 2250 (2010).

    Article  Google Scholar 

  49. M. Feng, A.L. Pan, H.R. Zhang, Z.A. Li, F. Liu, H.W. Liu, D.X. Shi, B.S. Zou, and H.J. Gao, Appl. Phys. Lett. 86, 141901 (2005).

    Article  Google Scholar 

  50. W.-J. Li and Z.-W. Fu, Appl. Surf. Sci. 256, 2447 (2010).

    Article  Google Scholar 

  51. C. Guo, S. Yin, Y. Huang, Q. Dong, and T. Sato, Langmuir 27, 12172 (2011).

    Article  Google Scholar 

  52. B.A. De Angelis and M. Schiavello, J. Solid State Chem. 21, 67 (1977).

    Article  Google Scholar 

  53. Y. Yu, J. Wang, W. Li, W. Zheng, and Y. Cao, Cryst. Eng. Commun. 17, 5074 (2015).

    Article  Google Scholar 

  54. S.-K. Jeong, M.-H. Kim, S.-Y. Lee, H. Seo, and D.-K. Choi, Nanoscale Res. Lett. 9, 1 (2014).

    Article  Google Scholar 

  55. N. Hidayatul Nazirah Kamarudin, A. Abdul Jalil, S. Triwahyono, R.R. Muktic, M. ArifAb Aziz, H. Dina Setiabudi, M. Nazlan Mohd Muhid, and H. Hamdan, Appl. Catal. A 431–432, 104 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Mahadevan Pillai.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, V.S., Bose, R.J., Sreedharan, R.S. et al. Highly Ordered Good Crystalline ZnO-Doped WO3 Thin Films Suitable for Optoelectronic Applications. JOM 71, 1874–1884 (2019). https://doi.org/10.1007/s11837-019-03425-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03425-8

Navigation