Skip to main content
Log in

Nonisothermal Reduction Kinetics in the Fe-Cu-O System Using H2

  • Metallurgical Kinetics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The reduction of Fe and Cu oxides by H2 in the Fe-Cu-O system was investigated by thermogravimetric analysis. The results showed that the reduction process of Fe3O4 can be divided into two stages under nonisothermal conditions: When the temperature is less than 570°C, the reduction reaction is Fe3O4 → Fe; when the temperature is above 570°C, the reduction process is Fe3O4 → FeO → Fe. The fundamental aspects are discussed, as well as the effect of Cu and Cu2O on the reduction behavior of Fe3O4. The ease of reduction in the three systems decreases in the order Fe3O4-Cu > Fe3O4-Cu2O > Fe3O4. The reactions were conducted under nonisothermal conditions within two regimes, viz. less than and greater than 570°C. The combined activation energies corresponding to the reduction of Fe3O4-Cu, Fe3O4-Cu2O, and Fe3O4 within the two regimes were found to be 209 kJ mol−1, 257 kJ mol−1, and 442 kJ mol−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Gorai, R.K. Jana, and Premchand, Resour. Conserv. Recycl. 39, 299 (2003).

    Article  Google Scholar 

  2. R.R. Moskalyk and A.M. Alfantazi, Miner. Eng. 16, 893 (2003).

    Article  Google Scholar 

  3. Z. Cao, T. Sun, D. Wu, X. Xue, and Z. Liu, Int. J. Miner. Metall. Mater. 16, 38 (2017).

    Google Scholar 

  4. H.F. Yang, L.L. Jing, and C.G. Dang, Chin. J. Nonferrous Metals 21, 1165 (2011).

    Google Scholar 

  5. B.Z. Ma, C.Y. Wang, W.J. Yang, Y.Q. Chen, and B. Yang, Int. J. Miner. Process. 124, 42 (2013).

    Article  Google Scholar 

  6. A. Rusen, A. Geveci, Y.A. Topkaya, and B. Derin, JOM 68, 1 (2016).

    Article  Google Scholar 

  7. P. Coursol, N.C. Valencia, P. Mackey, S. Bell, and B. Davis, JOM 64, 1305 (2012).

    Article  Google Scholar 

  8. S. Gyurov, N. Marinkov, Y. Kostova, D. Rabadjieva, D. Kovacheva, C. Tzvetkova, G. Gentscheva, and I. Penkov, Int. J. Miner. Process. 158, 1 (2017).

    Article  Google Scholar 

  9. I.B. Ahmed, P.K. Gbor, and C.Q. Jia, Can. J. Chem. Eng. 78, 694 (2000).

    Article  Google Scholar 

  10. I. Wilkomirsky, R. Parra, F. Parada, and E. Balladares, JOM 66, 1687 (2014).

    Article  Google Scholar 

  11. T.P. Liao, X. Zhu, X.J. Qi, H. Wang, and Y.F. Shi, Chem. Eng. Prog. 33, 762 (2014).

    Google Scholar 

  12. B. Li, J.W. Li, H. Zhou, Y.G. Wei, H. Wang, and J. Hu, Bulg. Chem. Commun. 49, 71 (2017).

    Google Scholar 

  13. C. Sun, B. Li, H. Wang, Y.G. Wei, J.W. Li, and J.H. Hu, Acta Energiae Solaris Sin. 38, 2033 (2017).

    Google Scholar 

  14. Y. Ma, Q. Wang, X. Sun, C. Wu, and Z. Gao, Renew. Energy 107, 522 (2017).

    Article  Google Scholar 

  15. X. Yang, Doctoral thesis, University of Science and Technology Beijing, 2008.

  16. A. Cores, A. Formoso, M.T. Larrea, and J. Qrtiz, Ironmak. Steelmak. 16, 446 (1989).

    Google Scholar 

  17. J. Matousek, JOM 64, 1314 (2012).

    Article  Google Scholar 

  18. T. Marin and T. Utigard, Metall. Mater. Trans. B 41, 535 (2010).

    Article  Google Scholar 

  19. B. Li, Doctoral thesis, Kunming University of Science and Technology, 2012.

  20. G. Li, Z.H. Li, H.W. Ma, and D. Chen, CIESC J. 65, 576 (2014).

    Google Scholar 

  21. X.B. Ai, H. Bai, L.H. Zhao, D.Q. Cang, and Q. Tang, Int. J. Miner. Metall. Mater. 20, 379 (2013).

    Article  Google Scholar 

  22. G. Chen, Master thesis, Dalian University of Technology, 2011.

  23. B.Z. Ma, P. Xing, W.J. Yang, C.G. Wang, Y.Q. Chen, and H. Wang, Metall. Mater. Trans. B 48, 2037 (2017).

    Article  Google Scholar 

  24. Y. Zhang, W. Wei, X. Yang, and F. Wei, J. Min. Metall. B 49, 13 (2013).

    Article  Google Scholar 

  25. S. Zhou, Y. Wei, B. Peng, B. Li, and H. Wang, J. Alloys Compd. 735, 365 (2017).

    Article  Google Scholar 

  26. X.G. Huang, Principles of Ferrous Metallurgy, 4th ed. (Beijing: Metallurgical Industry Press, 2012), p. 371.

    Google Scholar 

  27. T.A. Utigard, M. Wu, G. Plascencia, and T. Marin, Chem. Eng. Sci. 60, 2061 (2005).

    Article  Google Scholar 

  28. M.H. Khedr, J. Anal. Appl. Pyrol. 73, 123 (2005).

    Article  Google Scholar 

  29. E. Chen and K. Coley, Can. Metall. Q. 45, 167 (2006).

    Article  Google Scholar 

  30. S.X. Xia, R.F. Nie, X.Y. Lu, L.N. Wang, P. Chen, and Z.Y. Hou, J. Catal. 296, 1 (2012).

    Article  Google Scholar 

  31. L. Zheng, S. Xia, and Z. Hou, Appl. Clay Sci. 118, 68 (2015).

    Article  Google Scholar 

  32. S.C. Yang, W.N. Su, S.D. Lin, J. Rick, J.H. Cheng, J.Y. Liu, C.J. Pan, J.F. Lee, T.S. Chan, H.S. Sheu, and B.J. Hwang, Appl. Catal. B Environ. 106, 650 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by the National Natural Science Foundation of China (Nos. U1602272 and 51664039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, B., Wei, Y. et al. Nonisothermal Reduction Kinetics in the Fe-Cu-O System Using H2. JOM 71, 1813–1821 (2019). https://doi.org/10.1007/s11837-019-03402-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03402-1

Navigation