Skip to main content
Log in

Continuum Separation of Nanoscale Phase in Thermal Aging Fe-Cr Alloys: Phase-Field Simulation and Experiment

  • Metallurgical Kinetics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The separation of Cr-enriched α′ phase in Fe-(25–45) at.% Cr alloys is studied from the metastable region to the unstable region. The three-dimensional phase-field simulation shows a similar morphology with the transmission electron microscopy micrographs, and the quantitative simulation of particle size and particle number density have a good accordance with the present and the referred experimental results, with the microhardness of the alloy increasing simultaneously with the simulated volume fraction of the α′ phase. The mechanisms of phase separation were clarified by the interface composition evolution of the α/α′ phase, and a transitional characteristic from nucleation and growth to spinodal decomposition is shown in the 30 at.% Cr alloy aged at 750 K. The combination of quantitative simulation and experimental results demonstrates the ability of the phase-field model to perform high-throughput simulations for kinetics evolution in the alloys with phase separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.L. Klueh and A.T. Nelson, J. Nucl. Mater. 371, 37 (2007).

    Article  Google Scholar 

  2. O. Senninger, F. Soisson, E. Martinez, M. Nastar, C.C. Fu, and Y. Brechet, Acta Mater. 103, 1 (2016).

    Article  Google Scholar 

  3. T.S. Byun, Y. Yang, N.R. Overman, and J.T. Busby, JOM 68, 517 (2016).

    Article  Google Scholar 

  4. H. Jang, S. Hong, C. Jang, and J.G. Lee, Mater. Des. 56, 517 (2014).

    Article  Google Scholar 

  5. Y.S. Li, L.H. Zhu, C.W. Liu, and S.J. Shi, Materials 10, 1431 (2017).

    Article  Google Scholar 

  6. D.S. Chen, A. Kimura, and W. Han, J. Nucl. Mater. 455, 436 (2014).

    Article  Google Scholar 

  7. Y.Y. Dai, L. Ao, Q.Q. Sun, L. Yang, J.L. Nie, S.M. Peng, X.G. Long, X.S. Zhou, X.T. Zu, L. Liu, X. Sun, D. Terentyev, and F. Gao, Comput. Mater. Sci. 101, 293 (2015).

    Article  Google Scholar 

  8. P. Mugis, Y. Colignon, D. Mangelinck, and K. Hoummada, JOM 67, 2202 (2015).

    Article  Google Scholar 

  9. O. Senninger, E. Martínez, F. Soisson, M. Nastar, and Y. Bréchet, Acta Mater. 59, 97 (2014).

    Article  Google Scholar 

  10. W. Xiong, P. Hedström, M. Selleby, J. Odqvist, M. Thuvander, and Q. Chen, Calphad 35, 355 (2011).

    Article  Google Scholar 

  11. W. Xiong, M. Selleby, Q. Chen, J. Odqvist, and Y. Du, Crit. Rev. Solid State Mater. Sci. 35, 125 (2010).

    Article  Google Scholar 

  12. P. Hedström, S. Baghsheikhi, P. Liu, and J. Odqvist, Mater. Sci. Eng. A 534, 552 (2012).

    Article  Google Scholar 

  13. D. Chandra and L.H. Schwartz, Metall. Trans. A 2, 511 (1971).

    Article  Google Scholar 

  14. S.V. Rogozhkin, O.A. Korchuganova, and A.A. Aleev, Inorg. Mater. Appl. Res. 2, 210 (2016).

    Article  Google Scholar 

  15. S.S. Brenner, M. Miller, and W. Soffa, Script Metall. 16, 831 (1982).

    Article  Google Scholar 

  16. O. Soriano-Vargas, E.O. Avila-Davila, V.M. Lopez-Hirata, H.J. Dorantes-Rosales, and J.L. Gonzalez-Velazquez, Mater. Trans. 50, 1753 (2009).

    Article  Google Scholar 

  17. O. Soriano-Vargas, E.O. Avila-Davila, V.M. Lopez-Hirata, N. Cayetano-Castrod, and J.L. Gonzalez-Velazquez, Mater. Sci. Eng. A 527, 2910 (2010).

    Article  Google Scholar 

  18. Z.L. Yan, Y.S. Li, X.R. Zhou, Y.D. Zhang, and R. Hu, J. Alloys Compd. 725, 1035 (2017).

    Article  Google Scholar 

  19. J.W. Cahn, Acta Metall. 9, 795 (1961).

    Article  Google Scholar 

  20. J.W. Cahn, J. Chem. Phys. 42, 93 (1965).

    Article  Google Scholar 

  21. E.A. Lass, W.C. Johnson, and G.J. Shiflet, Calphad. 30, 42 (2006).

    Article  Google Scholar 

  22. M. Bonvalet, T. Philippe, X. Sauvage, and D. Blavette, Acta Mater. 100, 169 (2015).

    Article  Google Scholar 

  23. A.G. Khachaturyan, Theory of Structural Transformations in Solids (New York: John Wiley and Sons, 1983), pp. 128–136.

    Google Scholar 

  24. S.Y. Hu and L.Q. Chen, Acta Mater. 49, 1879 (2001).

    Article  Google Scholar 

  25. R.R. Mohanty, J.E. Guyer, and Y.H. Sohn, J. Appl. Phys. 106, 681 (2009).

    Article  Google Scholar 

  26. G.E. Dieter, Mechanical Metallurgy (London: McGraw Hill, 1988), pp. 212–226.

    Google Scholar 

  27. E.A. Brandes and G.B. Brook, Smithells Metals Reference Book, 7th ed. (Oxford, UK: Butterworths-Heinemann, 1992).

    Google Scholar 

  28. M.K. Miller, J. Phys. Colloq. 50, 247 (1989).

    Google Scholar 

  29. V.M. Lopez-Hirata, O. Soriano-Vargas, H.J. Rosales-Dorantes, and M.L. Saucedo-Muñoz, Mater. Charact. 62, 789 (2011).

    Article  Google Scholar 

  30. H.A. Calderon, P.W. Voorhees, J.L. Murray, and G. Kostorz, Acta Metall. Mater. 42, 991 (1994).

    Article  Google Scholar 

  31. A. Baldan, J. Mater. Sci. 37, 2171 (2002).

    Article  Google Scholar 

  32. M.K. Miller, J.M. Hyde, M.G. Hetherington, A. Cerezo, G.D.W. Smith, and C.M. Elliott, Acta Metall. 43, 3385 (1995).

    Article  Google Scholar 

  33. F. Danoix and P. Auger, Mater. Charact. 44, 177 (2000).

    Article  Google Scholar 

  34. Y.S. Li, Y.X. Pang, W. Liu, X.C. Wu, and Z.Y. Hou, J. Phase Equilib. Diff. 37, 261 (2016).

    Article  Google Scholar 

  35. K. Binder, and P. Fratzl, in: K. Gernot (Ed.), Phase Transformations in Materials, WILEY-VCH, Weinheim (2001).

  36. K. Binder, Phys. Rev. A 29, 341 (1984).

    Article  Google Scholar 

  37. J.W. Cahn, Acta Metall. 11, 1275 (1963).

    Article  Google Scholar 

  38. G. Monnet, Acta Mater. 95, 302 (2015).

    Article  Google Scholar 

  39. D. Terentyev, F. Bergner, and Y. Osetsky, Acta Mater. 61, 1444 (2013).

    Article  Google Scholar 

  40. J.N. Mohapatra, Y. Kamada, and H. Kikuchi, IEEE Trans. Magn. 47, 4356 (2011).

    Article  Google Scholar 

  41. X.U. Xin, J. Odqvist, M.H. Colliander, M. Thuvander, A. Steuwer, J.E. Westraadt, S. King, and P. Hedström, Metall. Mater. Trans. A 47, 1 (2016).

    Google Scholar 

  42. S. Novy, P. Pareige, and C. Pareige, J. Nucl. Mater. 384, 96 (2009).

    Article  Google Scholar 

  43. C. Pareige, M. Roussel, S. Novy, V. Kuksenko, P. Olsson, C. Domain, and P. Pareige, Acta Mater. 59, 2404 (2011).

    Article  Google Scholar 

  44. I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Article  Google Scholar 

  45. A.D. Brailsford and P. Wynblatt, Acta Metall. 27, 489 (1979).

    Article  Google Scholar 

  46. K.E. Yoon, R.D. Noebe, and D.N. Seidman, Acta Mater. 55, 1145 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51571122) and the Fundamental Research Funds for the Central Universities (Grant No. 30916015107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Shi, S., Zhu, L. et al. Continuum Separation of Nanoscale Phase in Thermal Aging Fe-Cr Alloys: Phase-Field Simulation and Experiment. JOM 71, 1803–1812 (2019). https://doi.org/10.1007/s11837-019-03399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03399-7

Navigation