Advertisement

JOM

, Volume 71, Issue 5, pp 1650–1659 | Cite as

Liquid–Liquid Flow in a Continuous Stirring Settler: CFD-PBM Simulation and Experimental Verification

  • Xu-huan Guo
  • Qiu-yue Zhao
  • Ting-an ZhangEmail author
  • Zi-mu Zhang
  • Shuai Zhu
Computational Approaches for Energy Materials and Processes
  • 277 Downloads

Abstract

Mixer-settlers have been widely employed in the rare earth element separation industry. Presently, reducing the loss of reagents and occupied areas and achieving a highly efficient separation in the settler are challenging issues. In this work, we report numerical simulations of the liquid–liquid flow in a stirring settler and thereafter describe the experimental validation. A computational fluid dynamics coupled population balance model (CFD-PBM) was developed to investigate the liquid–liquid flow characteristics and settling performance. The dispersion band thickness predicted by the turbulent aggregation model was in good agreement with the experimental measurements. The effects of the total liquid flow rate and initial average droplet diameter on the settling characteristics were further investigated. It was found that the dispersion band thickness increased significantly as the droplet diameter decreased. Moreover, this research shows that the CFD-PBM coupled model is promising for designing large-scale stirring settlers.

Notes

Acknowledgements

The authors are grateful for the financial support of the National 863 Plan (2010AA03A405) and the Excellent Talents Cultivation Project of Liaoning Province (2015020591).

References

  1. 1.
    H. Chen, J. Ma, and H.T. Liu, Int. J. Therm. Sci. 132, 335 (2018).CrossRefGoogle Scholar
  2. 2.
    J. Ma, Y.S. Sun, and B.W. Li, Int. J. Heat Mass Transf. 114, 469 (2017).CrossRefGoogle Scholar
  3. 3.
    M. Mohammadi, K. Forsberg, L.S. Kloo, J.M.D.L. Cruz, and A. Rasmuson, Hydrometallurgy 156, 215 (2015).CrossRefGoogle Scholar
  4. 4.
    Y. Liu, H.S. Jeon, and S.L. Man, Met. Mater. Int. 21, 944 (2015).CrossRefGoogle Scholar
  5. 5.
    J.E. Quinn, K.H. Soldenhoff, and G.W. Stevens, Hydrometallurgy 169, 621 (2017).CrossRefGoogle Scholar
  6. 6.
    H.W. Liu and L.H. Zhang, Chin. Rare Earths 21, 58 (2000).Google Scholar
  7. 7.
    Y. Ban, S. Hotoku, Y. Tsubata, and Y. Morita, Solv. Extr. Ion Exch. 32, 348 (2014).CrossRefGoogle Scholar
  8. 8.
    G.M. Madhu, S.M. Kumar, and M.A.L.A. Raj, J. Dispers. Sci. Technol. 28, 1123 (2007).CrossRefGoogle Scholar
  9. 9.
    M.C. Ruiz and R. Padilla, Hydrometallurgy 80, 32 (2005).CrossRefGoogle Scholar
  10. 10.
    G.Z. Yu and Z.S. Mao, Chem. Eng. Technol. 27, 407 (2004).CrossRefGoogle Scholar
  11. 11.
    S. Javanshir, M. Abdollahy, and H. Abolghasemi, Chem. Eng. Res. Des. 90, 1680 (2012).CrossRefGoogle Scholar
  12. 12.
    M. Shabani and A. Mazahery, Arch. Metall. Mater. 57, 173 (2012).CrossRefGoogle Scholar
  13. 13.
    M.O. Shabani, M. Alizadeh, and A. Mazahery, Eng. Comput. Germany 27, 373 (2011).CrossRefGoogle Scholar
  14. 14.
    K. Mohanarangam, W. Yang, K.R. Barnard, N.J. Kelly, and D.J. Robinson, Chem. Eng. Sci. 104, 925 (2013).CrossRefGoogle Scholar
  15. 15.
    G.L. Lane, K. Mohanarangam, W. Yang, D.J. Robinson, and K.R. Barnard, Chem. Eng. Res. Des. 109, 200 (2016).CrossRefGoogle Scholar
  16. 16.
    S.S. Ye, Q. Tang, Y.D. Wang, and W.Y. Fei, Int. J. Heat Fluid Flow 62, 568 (2016).CrossRefGoogle Scholar
  17. 17.
    S.K. Panda, K.K. Singh, K.T. Shenoy, and V.V. Buwa, Chem. Eng. J. 310, 120 (2017).CrossRefGoogle Scholar
  18. 18.
    T.A. Zhang, Y. Liu, Q.Y. Zhao, G.Z. Lv, Z.H. Dou, L.P. Niu, X.L. Jiang, and J.C. He, CN Patent CN102861457A (2013).Google Scholar
  19. 19.
    C. Lv, Z.M. Zhang, Q.Y. Zhao, and T.A. Zhang, J. Northeast. Univ. 35, 1570 (2014).Google Scholar
  20. 20.
    C. Lv, Z.M. Zhang, Q.Y. Zhao, S.C. Wang, T.A. Zhang, and Y. Liu, China Pet. Process. Petrochem. Technol. 17, 121 (2015).Google Scholar
  21. 21.
    C. Lv, Z.M. Zhang, Q.Y. Zhao, S.C. Wang, L. Yan, and T.A. Zhang, Chin. J. Rare Metals 39, 540 (2015).Google Scholar
  22. 22.
    S.C. Wang, T.A. Zhang, Z.M. Zhang, C. Lv, Q.Y. Zhao, and Y. Liu, China Pet. Process. Petrochem. Technol. 16, 99 (2014).Google Scholar
  23. 23.
    S.A. Morsi and A.J. Alexander, J. Fluid Mech. 55, 193 (1972).CrossRefGoogle Scholar
  24. 24.
    H. Luo and H.F. Svendsen, AIChE J. 42, 1225 (1996).CrossRefGoogle Scholar
  25. 25.
    H. Luo and H.F. Svendsen, Chem. Eng. Commun. 145, 145 (1996).CrossRefGoogle Scholar
  26. 26.
    P.G. Saffman and J.S. Turner, J. Fluid Mech. 1, 16 (1956).CrossRefGoogle Scholar
  27. 27.
    D.Y. Li, Z.M. Gao, A. Buffo, W. Podgorska, and D.L. Marchisio, AIChE J. 63, 2293 (2017).CrossRefGoogle Scholar
  28. 28.
    C. Tsouris and L.L. Tavlarides, AIChE J. 40, 395 (1994).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Xu-huan Guo
    • 1
    • 2
  • Qiu-yue Zhao
    • 1
    • 2
  • Ting-an Zhang
    • 1
    • 2
    Email author
  • Zi-mu Zhang
    • 1
    • 2
  • Shuai Zhu
    • 1
    • 2
  1. 1.Key Laboratory of Ecological Utilization of Multi-metal Intergrown Ores of Ministry of EducationNortheastern UniversityShenyangChina
  2. 2.School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations