Skip to main content
Log in

Effects of Applied Pressure on the Atomic Diffusion Coefficient During Spark Plasma Sintering of Crystalline Powders

  • Characterization of Advanced Sintering Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We report on the establishment of a framework to determine the value of the pressure-related atomic diffusion coefficient, D, and its use. Moreover, we clarify the underlying relationships between the as-determined D and the active densification mechanisms during crystalline powder sintering. During spark plasma sintering, the theoretical framework is validated by comparing the densification behaviors of Ti40.6Zr9.4Cu37.5Ni9.4Sn3.1 crystalline alloy powders with two types of particle sizes. Our results demonstrate quantitatively that the superimposition of an applied pressure enhances the atomic diffusion to promote densification during crystalline powder sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.J.L. Kang, Sintering (Oxford: Elsevier Butterworth-Heinemann, 2005).

    Google Scholar 

  2. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).

    Article  Google Scholar 

  3. A.A. Hidalgo, R. Frykholm, O.M. Ferri, T. Ebel, and F. Pyczak, Adv. Eng. Mater. 19, 160074 (2017).

    Google Scholar 

  4. J.E. Alaniz, J.R. Morales, and J.E. Garay, JOM 62, 58 (2010).

    Article  Google Scholar 

  5. G. Xie, D.V. Louzguine-Luzgin, H. Kimura, and A. Inoue, Appl. Phys. Lett. 90, 241902 (2007).

    Article  Google Scholar 

  6. Z.H. Zhang, Z.F. Liu, J.F. Lu, X.B. Shen, F.C. Wang, and Y.D. Wang, Scr. Mater. 81, 56 (2014).

    Article  Google Scholar 

  7. L.H. Liu, C. Yang, F. Wang, S.G. Qu, X.Q. Li, W.W. Zhang, Y.Y. Li, and L.C. Zhang, Mater. Des. 79, 1 (2015).

    Article  Google Scholar 

  8. C. Yang, L.M. Kang, X.X. Li, W.W. Zhang, D.T. Zhang, Z.Q. Fu, Y.Y. Li, L.C. Zhang, and E.J. Lavernia, Acta Mater. 132, 491 (2017).

    Article  Google Scholar 

  9. C. Yang, Y.J. Zhao, L.M. Kang, D.D. Li, W.W. Zhang, and L.C. Zhang, Mater. Lett. 210, 169 (2018).

    Article  Google Scholar 

  10. Y. Song, Y.Y. Li, Z.Y. Zhou, Y.G. Lai, and Y.Q. Ye, J. Mater. Sci. 46, 5645 (2011).

    Article  Google Scholar 

  11. P. Yu, L.C. Zhang, W.Y. Zhang, J. Das, K.B. Kim, and J. Eckert, Mater. Sci. Eng. A 444, 206 (2007).

    Article  Google Scholar 

  12. E. Olevsky and L. Froyen, Scr. Mater. 55, 1175 (2006).

    Article  Google Scholar 

  13. J. Milligan, R. Gauvin, and M. Brochu, Philos. Mag. 93, 2445 (2013).

    Article  Google Scholar 

  14. C. Yang, M.D. Zhu, X. Luo, L.H. Liu, W.W. Zhang, Y. Long, Z.Y. Xiao, Z.Q. Fu, L.C. Zhang, and E.J. Lavernia, Scr. Mater. 139, 96 (2017).

    Article  Google Scholar 

  15. J.E. Alaniz, A.D. Dupuy, Y. Kodera, and J.E. Garay, Scr. Mater. 92, 7 (2014).

    Article  Google Scholar 

  16. L.C. Zhang, K.B. Kim, P. Yu, W.Y. Zhang, U. Kunz, and J. Eckert, J. Alloys Compd. 428, 157 (2007).

    Article  Google Scholar 

  17. R.M. German, Sintering Theory and Practice (New York: Wiley, 1996).

    Google Scholar 

  18. J. Frenkel, J. Phys. 9, 385 (1945).

    Google Scholar 

  19. Б.Я. Пинec, Уcпexи физичкиx нayк 4, 501 (1954).

    Google Scholar 

  20. P.Y. Huang, Principle of Power Metallurgy, 2nd ed. (Beijing: Metallurgical Industry Press, 2008).

    Google Scholar 

  21. X.X. Li, C. Yang, T. Chen, Z.Q. Fu, Y.Y. Li, O.M. Ivasishin, and E.J. Lavernia, Scr. Mater. 151, 47 (2018).

    Article  Google Scholar 

  22. M. Köppers, C. Herzig, M. Friesel, and Y. Mishin, Acta Mater. 45, 4181 (1997).

    Article  Google Scholar 

  23. C. Yang, D.G. Mo, H.Z. Lu, X.Q. Li, W.W. Zhang, Z.Q. Fu, L.C. Zhang, and E.J. Lavernia, Scr. Mater. 134, 91 (2017).

    Article  Google Scholar 

  24. R. Li, T. Yuan, X. Liu, and K. Zhou, Scr. Mater. 110, 105 (2016).

    Article  Google Scholar 

  25. S. Deng, R. Li, T. Yuan, S. Xie, M. Zhang, K. Zhou, and P. Cao, Scr. Mater. 143, 25 (2018).

    Article  Google Scholar 

  26. X. Song, X. Liu, and J. Zhang, J. Am. Ceram. Soc. 89, 494 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51574128), the Guangdong Natural Science Foundation for Research Team (No. 2015A030312003), the Guangdong Application-oriented Special Funds for Science and Technology R&D (No. 2016B090931002), the Fundamental Research Funds for the Central Universities (No. 2017PY014) and the National Natural Science Foundation of China (No. 51504072).

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yang, C., Liu, Z. et al. Effects of Applied Pressure on the Atomic Diffusion Coefficient During Spark Plasma Sintering of Crystalline Powders. JOM 71, 2475–2483 (2019). https://doi.org/10.1007/s11837-019-03393-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03393-z

Navigation