Skip to main content
Log in

Insight into the Thermal Behavior of Tourmaline Mineral

  • Characterization of Advanced Sintering Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The thermal behavior of tourmaline mineral during the whole process from solid state at room temperature to molten salt at high temperature and back to solid state at room temperature has been systematically investigated. Surface characterization based on observation of the sintering point, thermogravimetry-differential scanning calorimetry, high-temperature x-ray diffraction analysis, field-emission transmission electron microscopy, and high-temperature Raman spectrometry did not reveal any significant changes in the crystal structure of tourmaline except for a slight decrease in grain size during the heating process from room temperature to 890°C. Further increase in the temperature to 1050°C resulted in a phase transformation into cordierite along with a sharp decrease in grain size; the phase transformation was complete at 1200°C. When the temperature was decreased to 890°C, the tourmaline phase was observed to precipitate in the molten salt, and the grain size was found to grow gradually. A continuous decrease in temperature resulted in more tourmaline with slightly smaller grain size due to the pinning effect at second-phase grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.V. Dietrich, The tourmaline group (New York: Van Nostrand Reinhold, 1985), pp. 173–175.

    Book  Google Scholar 

  2. T. Nakamura and T. Kubo, Ferroelectrics 137, 13 (1992).

    Article  Google Scholar 

  3. R. Lira, M.F. Poklepovic, and J.S. Am, Earth Sci 80, 272 (2017).

    Google Scholar 

  4. G. Li, D. Chen, W. Zhao, and X. Zhang, J. Environ. Chem. Eng. 3, 515 (2015).

    Article  Google Scholar 

  5. W. Jia, B. Wang, C. Wang, and H. Sun, J. Environ. Chem. Eng. 5, 2107 (2017).

    Article  Google Scholar 

  6. V.J. VanHinsberg, D.J. Henry, and H.R. Marschall, Can Mineral 49, 1 (2011).

    Article  Google Scholar 

  7. Y. Ahn, J. Seo, and J. Park, Vib Spectrosc 65, 165 (2013).

    Article  Google Scholar 

  8. B. Guo, L. Yang, W. Hu, W. Li, and H. Wang, Mod Phys Lett B 29, 1550183 (2015).

    Article  Google Scholar 

  9. N. Terultaro, F. Koji, K. Tetujiro, and M. Lida, Ferroelectrics 155, 207 (1994).

    Article  Google Scholar 

  10. L. Yu, C. Wang, F. Chen, J. Zhang, Y. Ruan, and J. Xu, J Mol Catal A: Chem 411, 1 (2016).

    Article  Google Scholar 

  11. Z. Hu and C. Sun, Proc. Environ. Sci. 31, 153 (2016).

    Article  Google Scholar 

  12. Z. Xie, F. Wang, J. Liang, Z. Wang, N. Hui, and Y. Ding, Mater Lett 217, 60 (2018).

    Article  Google Scholar 

  13. M. Mercurio, M. Rossi, F. Izzo, P. Cappelletti, C. Germinario, C. Grifa, M. Petrelli, A. Vergara, and A. Langella, Talanta 178, 147 (2018).

    Article  Google Scholar 

  14. M.S. Codeço, P. Weis, R.B. Trumbull, F. Pinto, P. Lecumberri-Sanchez, and F.D.H. Wilke, Chem Geol 468, 1 (2017).

    Article  Google Scholar 

  15. F. Wang, X. Zhang, J. Liang, B. Fang, H. Zhang, and H. Zhang, Ceram Int 44, 13253 (2018).

    Article  Google Scholar 

  16. G. Zhou, H. Liu, K. Chen, X. Gai, C. Zhao, L. Liao, K. Shen, Z. Fan, and Y. Shan, J. Alloys Compd. 744, 328 (2018).

    Article  Google Scholar 

  17. C. Wang, P. Wang, Y. Li, and Y. Zhao, Constr Build Mater 80, 195 (2015).

    Article  Google Scholar 

  18. P. Bacik, D. Ozdin, M. Miglierini, P. Kardošová, M. Pentrák, and J. Haloda, Phys Chem Miner 38, 599 (2011).

    Article  Google Scholar 

  19. D. He and S. Liu, Mod Phys Lett B 31, 1 (2017).

    Google Scholar 

  20. H. Ding, A. Rahman, Q. Li, and Y. Qiu, Constr Build Mater 150, 520 (2017).

    Article  Google Scholar 

  21. Y. Tang, Z. Ma, and R. Wu, Acta Mineral. Sin. 22, 383 (2002).

    Google Scholar 

  22. C. Castneda, S.G. Eckhout, G.M. Dacosta, N.F. Botelho, and E.D. Grave, Phys. Chem. Min. 33, 207 (2006).

    Article  Google Scholar 

  23. F. Jan, B. Ferdinando, N. Milan, and S. Henrik, Geochim. Cosm. Ac. 86, 239 (2012).

    Article  Google Scholar 

  24. D.A. Mckeown, Phys. Chem. Min. 35, 259 (2008).

    Article  Google Scholar 

  25. J. Liang, J. Meng, D. Zhu, Y. Ding, and Z. Liu, J. Chin. Ceram. Soc. 36, 257 (2008).

    Google Scholar 

  26. J. Meng, J. Liang, J. Liu, Y. Ding, and K. Gan, J Nanosci Nanotechnol 14, 3607 (2014).

    Article  Google Scholar 

  27. D. Zhu, J. Liang, Y. Ding, and L. Liu, J Am Ceram Soc 91, 2588 (2008).

    Article  Google Scholar 

  28. H. Zhang, P. Li, N. Hui, and J. Liang, J. Alloys Compd. 712, 567 (2017).

    Article  Google Scholar 

  29. F. Wang, H. Zhang, J. Liang, D. Feng, and Q. Tang, J. Alloys Compd. 693, 1323 (2017).

    Article  Google Scholar 

  30. C. Lu, W. Xi, X. Quan, and Z. Zhang, Energy Source Part A 40, 1417 (2018).

    Article  Google Scholar 

  31. Z. Sun, Y. Park, S. Zheng, G.A. Ayoko, and R.L. Frost, J Colloid Interface Sci 408, 75 (2013).

    Article  Google Scholar 

  32. S.M. Chauhan, S.H. Chaki, M.P. Deshpande, J.P. Tailor, and A.J. Khimani, Mater. Sci. Semicond. Proc. 74, 329 (2018).

    Article  Google Scholar 

  33. S. Riyaz, A. Parveen, and A. Azam, Perspect Sci 8, 632 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2017YFB0310805), National Natural Science Foundation of China (No. 51874115), Introduced Overseas Scholars Program of Hebei province, China (No. C201808), and Excellent Young Scientist Foundation of Hebei Province, China (No. E2018202241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsheng Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11837_2019_3391_MOESM1_ESM.pdf

Fig. S1. In situ high-temperature x-ray diffraction patterns of tourmaline during the cooling process; Fig. S2. EDS spectrum collected from the particles A (a) and crack B (b) in Fig. 4a (PDF 862 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Meng, J., Liang, J. et al. Insight into the Thermal Behavior of Tourmaline Mineral. JOM 71, 2468–2474 (2019). https://doi.org/10.1007/s11837-019-03391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03391-1

Navigation