Skip to main content
Log in

Enhanced Superconductivity in FeTe0.8S0.2 via Sn Doping

  • Characterization of Advanced Sintering Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Polycrystalline samples of Sn/FeTe0.8S0.2 with weight ratio x (Sn: FeTe0.8S0.2) = 0%, 3%, 5%, and 7% were successfully synthesized. Morphological characterizations of the samples indicate that introducing Sn is beneficial for grain growth, thus contributing to enhancement of superconductivity. In particular, the x = 3% sample exhibits a sharp superconducting transition and \( T_{\text{c}}^{\text{zero}} \) is increased by about 3 K based on RT curves. The low-melting-point material, Sn, is proposed to have two roles. One role is acting as the adhesive to combine the adjacent particles at the melting temperature of Sn, which is of benefit for improving the \( T_{\text{c}}^{\text{zero}} \) of the superconductivity. The other role is acting as the dopant in the tetragonal phase, which is of benefit for improving the \( T_{\text{c}}^{\text{onset}} \) of the superconductivity. This proposal may provide a new strategy for improving the superconductivity in other superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Paglione and R.L. Greene, Nat. Phys. 6, 645 (2010).

    Article  Google Scholar 

  2. T. Watanabe, H. Yanagi, Y. Kamihara, T. Kamiya, M. Hirano, and H. Hosono, J. Solid State Chem. 181, 2117 (2008).

    Article  Google Scholar 

  3. Z.-A. Ren, G.-C. Che, X.-L. Dong, J. Yang, W. Lu, W. Yi, X.-L. Shen, Z.-C. Li, L.-L. Sun, F. Zhou, and Z.-X. Zhao, EPL 83, 17002 (2008).

    Article  Google Scholar 

  4. K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78, 062001 (2009).

    Article  Google Scholar 

  5. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  6. Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, J. Am. Chem. Soc. 128, 10012 (2006).

    Article  Google Scholar 

  7. Z.-A. Ren, W. Lu, J. Yang, W. Yi, X.-L. Shen, Z.-C. Li, G.-C. Che, X.-L. Dong, L.-L. Sun, F. Zhou, and Z.-X. Zhao, Chin. Phys. Lett 25, 2215 (2008).

    Article  Google Scholar 

  8. F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P.M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, and M.-K. Wu, PNAS 105, 14262 (2008).

    Article  Google Scholar 

  9. P. Zajdel, P.-Y. Hsieh, E.E. Rodriguez, N.P. Butch, J.D. Magill, J. Paglione, P. Zavalij, M.R. Suchomel, and M.A. Green, J. Am. Chem. Soc. 132, 13000 (2010).

    Article  Google Scholar 

  10. K.-W. Yeh, T.-W. Huang, Y. Huang, T.-K. Chen, F.-C. Hsu, P.M. Wu, Y.-C. Lee, Y.-Y. Chu, C.-L. Chen, J.-Y. Luo, D.-C. Yan, and M.-K. Wu, EPL 84, 37002 (2008).

    Article  Google Scholar 

  11. Y. Cui, G. Zhang, H. Li, H. Lin, X. Zhu, H.-H. Wen, G. Wang, J. Sun, M. Ma, Y. Li, D. Gong, T. Xie, Y. Gu, S. Li, H. Luo, P. Yu, and W. Yu, Sci. Bull. 63, 11 (2018).

    Article  Google Scholar 

  12. S. Li, C. de la Cruz, Q. Huang, Y. Chen, J.W. Lynn, J. Hu, Y.-L. Huang, F.-C. Hsu, K.-W. Yeh, M.-K. Wu, and P. Dai, Phys. Rev. B 79, 054503 (2009).

    Article  Google Scholar 

  13. T. Taen, Y. Tsuchiya, Y. Nakajima, and T. Tamegai, Phys. Rev. B 80, 092502 (2009).

    Article  Google Scholar 

  14. Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, Appl. Phys. Lett. 94, 012503 (2009).

    Article  Google Scholar 

  15. N. Katayama, S. Ji, D. Louca, S. Lee, M. Fujita, T.J. Sato, J. Wen, Z. Xu, G. Gu, G. Xu, Z. Lin, M. Enoki, S. Chang, K. Yamada, and J.M. Tranquada, J. Phys. Soc. Jpn. 79, 113702 (2010).

    Article  Google Scholar 

  16. Y. Mizuguchi and Y. Takano, Z. Kristallogr. 226, 417 (2011).

    Article  Google Scholar 

  17. N. Chen, Y. Liu, Z. Ma, H. Li, and M. Shahriar Al Hossain, J. Alloys Compd. 633, 233 (2015).

    Article  Google Scholar 

  18. N. Chen, Z. Ma, Y. Liu, X. Li, Q. Cai, H. Li, and L. Yu, J. Alloys Compd. 588, 418 (2014).

    Article  Google Scholar 

  19. Z.T. Zhang, Z.R. Yang, L. Li, L. Pi, S. Tan, and Y.H. Zhang, J. Appl. Phys. 107, 083903 (2010).

    Article  Google Scholar 

  20. M.H. Fang, H.M. Pham, B. Qian, T.J. Liu, E.K. Vehstedt, Y. Liu, L. Spinu, and Z.Q. Mao, Phys. Rev. B 78, 224503 (2008).

    Article  Google Scholar 

  21. W. Bao, Y. Qiu, Q. Huang, M.A. Green, P. Zajdel, M.R. Fitzsimmons, M. Zhernenkov, S. Chang, M. Fang, B. Qian, E.K. Vehstedt, J. Yang, H.M. Pham, L. Spinu, and Z.Q. Mao, Phys. Rev. Lett. 102, 247001 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work from the Ministry of Science and Technology of the People’s Republic of China (2016YFB0700504) is gratefully acknowledged. We acknowledge the following funding: National Natural Science Foundation of China (11774217, 10904088), Shanghai Pujiang Program (13PJD015), Science and Technology Commission of Shanghai Municipality (13ZR1415200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenjie Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Feng, Z., Li, T. et al. Enhanced Superconductivity in FeTe0.8S0.2 via Sn Doping. JOM 71, 2484–2488 (2019). https://doi.org/10.1007/s11837-019-03379-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03379-x

Navigation