Skip to main content
Log in

Influence of Synthesis-Dependent Structural Morphology on Performance of Natural Dye-Sensitized ZnO Solar Cells

  • Energy Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

ZnO nanostructures were synthesized by solvothermal (STT), solution combustion (SCT), and template synthesis (TS) techniques, showing the formation of rod-like, dot-like, and wire-like morphology. Pure-phase wurtzite structure was observed for STT and SCT samples, and mixed-phase wurtzite structure for the TS sample. Strong excitonic peaks appeared for STT and TS samples, whereas the excitonic peak tended to shift for the SCT sample. Dye-sensitized solar cell device structures using natural anthocyanin dye were fabricated and their IV characteristics studied. The ZnO nanowire-based device showed the maximum open-circuit voltage (Voc) and short-circuit current density (Isc) in comparison with the rod-like and flake-like ZnO nanostructures. The photoconversion efficiency (PCE) was found to be 3.2%, 4.4%, and 5.4% for the rod-, dot-, and wire-like morphology, respectively. The enhancement in the PCE can be attributed to increased charge collection at the interface of the ZnO photoanode and electrolyte layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. O’Regan and M. Grätzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  2. B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, Sol. Energy Mater. Sol. Cells 90, 549 (2006).

    Article  Google Scholar 

  3. L. Andrade, H.A. Ribeiro, and A. Mendes, Encycl. Inorg. Bioinorg. Chem. 1 (2011).

  4. K.R. Millington, Encycl. Electrochem. Power Sources 35, 10 (2009).

    Article  Google Scholar 

  5. J. Gong, J. Liang, and K. Sumathy, Renew. Sustain. Energy Rev. 16, 5848 (2012).

    Article  Google Scholar 

  6. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, and M. Grätzel, Nat. Chem. 6, 242 (2014).

    Article  Google Scholar 

  7. V. Sugathan, E. John, and K. Sudhakar, Renew. Sustain. Energy Rev. 52, 54 (2015).

    Article  Google Scholar 

  8. S. Mahalingam and H. Abdullah, Renew. Sustain. Energy Rev. 63, 245 (2016).

    Article  Google Scholar 

  9. S. Suhaimi, M.M. Shahimin, Z.A. Alahmed, J. Chysky, and A.H. Reshak, Int. J. Electrochem. Sci. 10, 2859 (2015).

    Google Scholar 

  10. C.D. Grant, A.M. Schwartzberg, G.P. Smestad, J. Kowalik, L.M. Tolbert, and J.Z. Zhang, J. Electroanal. Chem. 522, 40 (2002).

    Article  Google Scholar 

  11. F.O. Lenzmann and J.M. Kroon, Adv. Optoelectron. 65073, 10 (2007).

    Google Scholar 

  12. M.K. Nazeeruddin, F. de Angelis, and S. Fantacci, et al., J. Am. Chem. Soc. 127, 16835 (2005).

    Article  Google Scholar 

  13. M. Gratzel, J. Photochem. Photobiol. A Chem. 164, 3 (2004).

    Article  Google Scholar 

  14. K. Hara, T. Sato, and R. Katohetal, J. Phys. Chem. B 107, 597 (2003).

    Article  Google Scholar 

  15. N.A. Andersen and T. Lian, Annu. Rev. Phys. Chem. 56, 491 (2005).

    Article  Google Scholar 

  16. J.-H. Yum, E. Baranoff, S. Wenger, M.K. Nazeeruddin, and M. Gratzel, Energy Environ. Sci. 4, 842 (2011).

    Article  Google Scholar 

  17. C. Sima, C. Grigoriu, and S. Antohe, Thin Solid Films 519, 595 (2010).

    Article  Google Scholar 

  18. T.N. Murakami, Y. Kijitori, N. Kawashima, and T. Miyasaka, J. Photochem. Photobiol. A Chem. 164, 187 (2004).

    Article  Google Scholar 

  19. S. Shalini, R. Balasundara Prabhu, S. Prasanna, T.K. Mallick, and S. Senthilarasu, Renew. Sustain. Energy Rev. 51, 1306 (2015).

    Article  Google Scholar 

  20. R. Prabhakar, K. Woon-Ki, and Y. Yeon-Tae, ACS Appl. Mater. Interfaces 5, 3026 (2013).

    Article  Google Scholar 

  21. M. Amdad Ali, M. Rahman Idris, and M. Emran Quayum, J. Nanostruct. Chem. 3, 1 (2013).

    Google Scholar 

  22. N. Kumar, G.D. Varma, R. Nath, and A.K. Srivastava, Appl. Phys. A 104, 1169 (2011).

    Article  Google Scholar 

  23. J. Prakash Maran, V. Sivakumar, K. Thirugnanasambandham, and R. Sridhar, J. Food Sci. Technol. 52, 3617 (2015).

    Google Scholar 

  24. T. Ghoshal, S. Biswas, M. Paul, and S.K. De, J. Nanosci. Nanotechnol. 9, 5973 (2009).

    Article  Google Scholar 

  25. D. Gao, Z. Shi, Y. Xu, J. Zhang, G. Yang, J. Zhang, Z. Wang, and D. Xue, Nanoscale Res. Lett. 5, 1289 (2010).

    Article  Google Scholar 

  26. S. Chakraborty, A.K. Kole, and P. Kumbhakar, Mater. Lett. 67, 362 (2012).

    Article  Google Scholar 

  27. P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, and H.B. Pan, Nucl. Instrum. Methods Phys. Res. B 199, 286 (2003).

    Article  Google Scholar 

  28. S. Getie, A. Belay, A.R. Chandra Reddy, and Z. Belay, J. Nanomed. Nanotechnol. S8, 04 (2017).

    Google Scholar 

  29. S. Suwanboon, P. Amornpitoksuk, P. Bangrak, A. Sukolrat, and N. Muensit, J. Ceram. Process. Res. 11, 547 (2010).

    Google Scholar 

  30. N. Morales-Flores, R. Galeazzi, E. Rosendo, T. Díaz, S. Velumani, and U. Pal, Adv. Nano Res. 1, 59 (2013).

    Article  Google Scholar 

  31. R. Khokhra, B. Bharti, H.-N. Lee, and R. Kumar, Sci. Rep. 7, 1 (2017).

    Google Scholar 

  32. Y. Gu, I.L. Kuskovsky, M. Yin, S. O’Brien, and G.F. Neumark, Appl. Phys. Lett. 85, 3833 (2004).

    Article  Google Scholar 

  33. U. Manzoor, M. Islam, L. Tabassam, and S. Ur Rahman, Phys. E 41, 1669 (2009).

    Article  Google Scholar 

  34. T. Movlarooy, Mater. Res. Express 5, 035032 (2018).

    Article  Google Scholar 

  35. T. Marimuthu, N. Anandhan, and R. Thangamuthu, Appl. Surf. Sci. 428, 385 (2018).

    Article  Google Scholar 

  36. E.M. Elsayed, A.E. Shalan, and M.M. Rashad, J. Mater. Sci. Mater. Electron. 25, 3412 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2018R1D1A1B07051095, 2018R1D1A1B07050237, and 2016R1A6A1A03012877).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. Jeon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Kumar, V., Raj, D. et al. Influence of Synthesis-Dependent Structural Morphology on Performance of Natural Dye-Sensitized ZnO Solar Cells. JOM 71, 1477–1484 (2019). https://doi.org/10.1007/s11837-019-03372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03372-4

Navigation