Preclinical In Vivo Evaluation and Screening of Zinc-Based Degradable Metals for Endovascular Stents


Zinc alloy development and characterization for vascular stent application have been facilitated by many standardized and inexpensive methods. In contrast, overly simplistic in vitro approaches dominate the preliminary biological testing of materials. In 2012, our group introduced a metal wire implantation model in rats as a cost-effective and realistic approach to evaluate the biocompatibility of degradable materials in the vascular environment. In this work, we adapted metrics routinely used for evaluating stents to quantitatively characterize the long-term progression of the neointima that forms around zinc-based wire implants. Histological cross-sections were used to measure the length of neointimal protrusion from the wire into the lumen (denoted wire to lumen thickness), the base neointimal length (describing the breadth of neointimal activation), and the neointimal area. These metrics were used to provide in-depth characterization details for neointimal responses to Zn-Mg and Zn-Li alloys and may be used to compare different materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    P.K. Bowen, E.R. Shearier, S. Zhao, R.J. Guillory, F. Zhao, J. Goldman, and J.W. Drelich, Adv. Healthc. Mater. 5, 1121 (2016).

    Article  Google Scholar 

  2. 2.

    E. Mostaed, M. Sikora-Jasinska, J.W. Drelich, and M. Vedani, Acta Biomater. 71, 1 (2018).

    Article  Google Scholar 

  3. 3.

    G. Katarivas Levy, J. Goldman, and E. Aghion, Metals 7, 402 (2017).

    Article  Google Scholar 

  4. 4.

    J. Ma, N. Zhao, and D. Zhu, ACS Biomater. Sci. Eng. 1, 1174 (2015).

    Google Scholar 

  5. 5.

    E.R. Shearier, P.K. Bowen, W. He, A. Drelich, J. Drelich, J. Goldman, and F. Zhao, ACS Biomater. Sci. Eng. 2, 634 (2016).

    Google Scholar 

  6. 6.

    D. Zhu, Y. Su, M.L. Young, J. Ma, Y. Zheng, and L. Tang, ACS Appl. Biomater. Mater. Interfaces 9, 27453 (2017).

    Article  Google Scholar 

  7. 7.

    J. Kubásek, D. Vojtěch, E. Jablonská, I. Pospíšilová, J. Lipov, and T. Ruml, Mater. Sci. Eng. C 58, 24 (2016).

    Article  Google Scholar 

  8. 8.

    H. Li, X. Xie, Y. Zheng, Y. Cong, F. Zhou, K. Qiu, X. Wang, S. Chen, L. Huang, and L. Tian, Sci. Rep. 5, 10719 (2015).

    Article  Google Scholar 

  9. 9.

    Z. Tang, H. Huang, J. Niu, L. Zhang, H. Zhang, J. Pei, J. Tan, and G. Yuan, Mater. Des. 117, 84 (2017).

    Article  Google Scholar 

  10. 10.

    Z. Tang, J. Niu, H. Huang, H. Zhang, J. Pei, J. Ou, and G. Yuan, J. Mech. Behav. Biomed. Mater. 72, 182 (2017).

    Article  Google Scholar 

  11. 11.

    P. Libby and G.K. Hansson, Circ. Res. 116, 307–311 (2015).

    Article  Google Scholar 

  12. 12.

    T. Inoue, K. Croce, T. Morooka, M. Sakuma, K. Node, and D.I. Simon, J. Am. Coll. Cardiol. 4, 1057 (2011).

    Article  Google Scholar 

  13. 13.

    Y. Chen, Z. Xu, C. Smith, and J. Sankar, Acta Biomater. 10, 4561 (2014).

    Article  Google Scholar 

  14. 14.

    M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, and C. von Schnakenburg, Biomaterials 27, 4955 (2006).

    Article  Google Scholar 

  15. 15.

    D. Pierson, J. Edick, A. Tauscher, E. Pokorney, P. Bowen, J. Gelbaugh, J. Stinson, H. Getty, C.H. Lee, and J. Drelich, J. Biomed. Mater. Res. Part B 100, 58 (2012).

    Article  Google Scholar 

  16. 16.

    H. Jin, S. Zhao, R. Guillory, P.K. Bowen, Z. Yin, A. Griebel, J. Schaffer, E.J. Earley, J. Goldman, and J.W. Drelich, Mater. Sci. Eng. C 84, 67 (2018).

    Article  Google Scholar 

  17. 17.

    S. Zhao, J.-M. Seitz, R. Eifler, H.J. Maier, R.J. Guillory II, E.J. Earley, A. Drelich, J. Goldman, and J.W. Drelich, Mater. Sci. Eng. C 76, 301 (2017).

    Article  Google Scholar 

  18. 18.

    R.J. Guillory, P.K. Bowen, S.P. Hopkins, E.R. Shearier, E.J. Earley, A.A. Gillette, E. Aghion, M. Bocks, J.W. Drelich, and J. Goldman, ACS Biomater. Sci. Eng. 2, 2355 (2016).

    Article  Google Scholar 

  19. 19.

    H. Yang, C. Wang, C. Liu, H. Chen, Y. Wu, J. Han, Z. Jia, W. Lin, D. Zhang, and W. Li, Biomaterials 145, 92 (2017).

    Article  Google Scholar 

  20. 20.

    M. Joner, A.V. Finn, A. Farb, E.K. Mont, F.D. Kolodgie, E. Ladich, R. Kutys, K. Skorija, H.K. Gold, and R. Virmani, J. Am. Coll. Cardiol. 48, 193 (2006).

    Article  Google Scholar 

  21. 21.

    A. Murata, D. Wallace-Bradley, A. Tellez, C. Alviar, M. Aboodi, A. Sheehy, L. Coleman, L. Perkins, G. Nakazawa, and G. Mintz, J. Am. Coll. Cardiol. 3, 76 (2010).

    Article  Google Scholar 

  22. 22.

    G. Nakazawa, A.V. Finn, M. Vorpahl, E.R. Ladich, F.D. Kolodgie, and R. Virmani, J. Am. Coll. Cardiol. 57, 390 (2011).

    Article  Google Scholar 

  23. 23.

    R. Kornowski, M.K. Hong, F.O. Tio, O. Bramwell, H. Wu, and M. Leon, J. Am. Coll. Cardiol. 31, 224 (1998).

    Article  Google Scholar 

  24. 24.

    A.A. Shomali, R.J. Guillory, D. Seguin, J. Goldman, and J.W. Drelich, Surf. Innov. 5, 211 (2017).

    Article  Google Scholar 

  25. 25.

    P.K. Bowen, R.J. Guillory II, E.R. Shearier, J.-M. Seitz, J. Drelich, M. Bocks, F. Zhao, and J. Goldman, Mater. Sci. Eng. C 56, 467 (2015).

    Article  Google Scholar 

  26. 26.

    A.W. Heldman, L. Cheng, G.M. Jenkins, P.F. Heller, D.-W. Kim, M. Ware Jr, C. Nater, R.H. Hruban, B. Rezai, and B.S. Abella, Circulation 103, 2289 (2001).

    Article  Google Scholar 

  27. 27.

    R.S. Schwartz, K.C. Huber, J.G. Murphy, W.D. Edwards, A.R. Camrud, R.E. Vlietstra, and D.R. Holmes, J. Am. Coll. Cardiol. 19, 267 (1992).

    Article  Google Scholar 

  28. 28.

    S. Windecker, M. Haude, F.-J. Neumann, K. Stangl, B. Witzenbichler, T. Slagboom, M. Sabaté, J. Goicolea, P. Barragan, and S. Cook, Circ. Cardiovasc. Interv. 8, e001441 (2015).

    Article  Google Scholar 

Download references


U.S. National Institute of Health (Grant #R21EB024034-01A1) is acknowledged for funding this work. Roger J. Guillory II was supported by the National Science Foundation Graduate Research Fellowship Program.

Author information



Corresponding authors

Correspondence to Roger J. Guillory II or Jeremy Goldman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 149 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guillory, R.J., Oliver, A.A., Davis, E.K. et al. Preclinical In Vivo Evaluation and Screening of Zinc-Based Degradable Metals for Endovascular Stents. JOM 71, 1436–1446 (2019).

Download citation