Abstract
Zinc alloy development and characterization for vascular stent application have been facilitated by many standardized and inexpensive methods. In contrast, overly simplistic in vitro approaches dominate the preliminary biological testing of materials. In 2012, our group introduced a metal wire implantation model in rats as a cost-effective and realistic approach to evaluate the biocompatibility of degradable materials in the vascular environment. In this work, we adapted metrics routinely used for evaluating stents to quantitatively characterize the long-term progression of the neointima that forms around zinc-based wire implants. Histological cross-sections were used to measure the length of neointimal protrusion from the wire into the lumen (denoted wire to lumen thickness), the base neointimal length (describing the breadth of neointimal activation), and the neointimal area. These metrics were used to provide in-depth characterization details for neointimal responses to Zn-Mg and Zn-Li alloys and may be used to compare different materials.
This is a preview of subscription content, access via your institution.








References
P.K. Bowen, E.R. Shearier, S. Zhao, R.J. Guillory, F. Zhao, J. Goldman, and J.W. Drelich, Adv. Healthc. Mater. 5, 1121 (2016).
E. Mostaed, M. Sikora-Jasinska, J.W. Drelich, and M. Vedani, Acta Biomater. 71, 1 (2018).
G. Katarivas Levy, J. Goldman, and E. Aghion, Metals 7, 402 (2017).
J. Ma, N. Zhao, and D. Zhu, ACS Biomater. Sci. Eng. 1, 1174 (2015).
E.R. Shearier, P.K. Bowen, W. He, A. Drelich, J. Drelich, J. Goldman, and F. Zhao, ACS Biomater. Sci. Eng. 2, 634 (2016).
D. Zhu, Y. Su, M.L. Young, J. Ma, Y. Zheng, and L. Tang, ACS Appl. Biomater. Mater. Interfaces 9, 27453 (2017).
J. Kubásek, D. Vojtěch, E. Jablonská, I. Pospíšilová, J. Lipov, and T. Ruml, Mater. Sci. Eng. C 58, 24 (2016).
H. Li, X. Xie, Y. Zheng, Y. Cong, F. Zhou, K. Qiu, X. Wang, S. Chen, L. Huang, and L. Tian, Sci. Rep. 5, 10719 (2015).
Z. Tang, H. Huang, J. Niu, L. Zhang, H. Zhang, J. Pei, J. Tan, and G. Yuan, Mater. Des. 117, 84 (2017).
Z. Tang, J. Niu, H. Huang, H. Zhang, J. Pei, J. Ou, and G. Yuan, J. Mech. Behav. Biomed. Mater. 72, 182 (2017).
P. Libby and G.K. Hansson, Circ. Res. 116, 307–311 (2015).
T. Inoue, K. Croce, T. Morooka, M. Sakuma, K. Node, and D.I. Simon, J. Am. Coll. Cardiol. 4, 1057 (2011).
Y. Chen, Z. Xu, C. Smith, and J. Sankar, Acta Biomater. 10, 4561 (2014).
M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, and C. von Schnakenburg, Biomaterials 27, 4955 (2006).
D. Pierson, J. Edick, A. Tauscher, E. Pokorney, P. Bowen, J. Gelbaugh, J. Stinson, H. Getty, C.H. Lee, and J. Drelich, J. Biomed. Mater. Res. Part B 100, 58 (2012).
H. Jin, S. Zhao, R. Guillory, P.K. Bowen, Z. Yin, A. Griebel, J. Schaffer, E.J. Earley, J. Goldman, and J.W. Drelich, Mater. Sci. Eng. C 84, 67 (2018).
S. Zhao, J.-M. Seitz, R. Eifler, H.J. Maier, R.J. Guillory II, E.J. Earley, A. Drelich, J. Goldman, and J.W. Drelich, Mater. Sci. Eng. C 76, 301 (2017).
R.J. Guillory, P.K. Bowen, S.P. Hopkins, E.R. Shearier, E.J. Earley, A.A. Gillette, E. Aghion, M. Bocks, J.W. Drelich, and J. Goldman, ACS Biomater. Sci. Eng. 2, 2355 (2016).
H. Yang, C. Wang, C. Liu, H. Chen, Y. Wu, J. Han, Z. Jia, W. Lin, D. Zhang, and W. Li, Biomaterials 145, 92 (2017).
M. Joner, A.V. Finn, A. Farb, E.K. Mont, F.D. Kolodgie, E. Ladich, R. Kutys, K. Skorija, H.K. Gold, and R. Virmani, J. Am. Coll. Cardiol. 48, 193 (2006).
A. Murata, D. Wallace-Bradley, A. Tellez, C. Alviar, M. Aboodi, A. Sheehy, L. Coleman, L. Perkins, G. Nakazawa, and G. Mintz, J. Am. Coll. Cardiol. 3, 76 (2010).
G. Nakazawa, A.V. Finn, M. Vorpahl, E.R. Ladich, F.D. Kolodgie, and R. Virmani, J. Am. Coll. Cardiol. 57, 390 (2011).
R. Kornowski, M.K. Hong, F.O. Tio, O. Bramwell, H. Wu, and M. Leon, J. Am. Coll. Cardiol. 31, 224 (1998).
A.A. Shomali, R.J. Guillory, D. Seguin, J. Goldman, and J.W. Drelich, Surf. Innov. 5, 211 (2017).
P.K. Bowen, R.J. Guillory II, E.R. Shearier, J.-M. Seitz, J. Drelich, M. Bocks, F. Zhao, and J. Goldman, Mater. Sci. Eng. C 56, 467 (2015).
A.W. Heldman, L. Cheng, G.M. Jenkins, P.F. Heller, D.-W. Kim, M. Ware Jr, C. Nater, R.H. Hruban, B. Rezai, and B.S. Abella, Circulation 103, 2289 (2001).
R.S. Schwartz, K.C. Huber, J.G. Murphy, W.D. Edwards, A.R. Camrud, R.E. Vlietstra, and D.R. Holmes, J. Am. Coll. Cardiol. 19, 267 (1992).
S. Windecker, M. Haude, F.-J. Neumann, K. Stangl, B. Witzenbichler, T. Slagboom, M. Sabaté, J. Goicolea, P. Barragan, and S. Cook, Circ. Cardiovasc. Interv. 8, e001441 (2015).
Acknowledgements
U.S. National Institute of Health (Grant #R21EB024034-01A1) is acknowledged for funding this work. Roger J. Guillory II was supported by the National Science Foundation Graduate Research Fellowship Program.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Guillory, R.J., Oliver, A.A., Davis, E.K. et al. Preclinical In Vivo Evaluation and Screening of Zinc-Based Degradable Metals for Endovascular Stents. JOM 71, 1436–1446 (2019). https://doi.org/10.1007/s11837-019-03371-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-019-03371-5