Skip to main content
Log in

Prediction of Carbon Partitioning and Austenite Stability via Non-equilibrium Thermodynamics in Quench and Partition (Q&P) Steel

  • Advanced High-Strength Steels for Automobiles
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Thermodynamics-based predictive modeling for phase characteristics after the quench and partition (Q&P) process is key to the design of new alloys and processing cycles with the best combination of mechanical properties. The austenite carbon content influences its phase stability during mechanical deformation and thus determines the improvement to total elongation from transformation-induced plasticity. The current article describes a carbon partition model based on para-equilibrium simulations with the addition of a temperature-dependent effective stored energy model that predicts carbon enrichment in austenite after Q&P processing. A retained austenite stability model is also proposed that uses the predicted carbon in austenite to quantify the austenite stability in terms of the Msσ temperature. The developed models were calibrated and subsequently validated using measurements from advanced characterization techniques such as local electrode atom probe tomography, synchrotron-based x-ray diffraction and uniaxial tensile tests at varying test temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.K. Matlock, J.G. Speer, E. De Moor, and P.J. Gibbs, Jestech 15, 1 (2012).

    Google Scholar 

  2. E. De Moor, P.J. Gibbs, J.G. Speer, and D.K. Matlock, Iron Steel Technol. 7, 133 (2010).

    Google Scholar 

  3. N. Fonstein, Advanced High Strength Sheet Steels (Springer Publishing, 2015). ISBN: 978-3-319-19165-2.

  4. G.B. Olson and M. Azrin, Metall. Trans. A 9, 713 (1978).

    Article  Google Scholar 

  5. G.B. Olson, Deformation Processing Structure, ed. G. Krauss (Metals Park: ASM Materials Science, 1984), pp. 391–424.

    Google Scholar 

  6. V.F. Zackay, E.R. Parker, D. Fahr, and R. Busch, Trans. ASM 60, 252 (1967).

    Google Scholar 

  7. M.Y. Demeri, Advanced High-Strength Steels: Science, Technology, and Applications (ASM International, 2013). ISBN: 978-1-62708-005-7.

  8. N. Fonstein, Advanced High Strength Sheet Steels (Springer International Publishing, Cham, 2015), pp. 185–239. ISBN: 978-3-319-19164-2.

  9. J.G. Speer, A.M. Streicher, D.K. Matlock, F. Rizzo, G. Krauss, Minerals, Metals and Materials Society, and Iron & Steel Society, in Symposium, Austenite Formation and Decomposition, Chicago, IL (TMS, Warrendale, PA, 2003), pp. 505–522. https://www.tib.eu/en/search/id/BLCP%3ACN050898361/Quenching-and-Partitioning-A-Fundamentally-New/.

  10. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Acta Mater. 51, 2611 (2003).

    Article  Google Scholar 

  11. A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E. De Moor, Acta Mater. 56, 16 (2008).

    Article  Google Scholar 

  12. J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock, Curr. Opin. Solid State Mater. Sci. 8, 219 (2004).

    Article  Google Scholar 

  13. G.B. Olson, H.K.D.H. Bhadeshia, and M. Cohen, Metall. Trans. A 21, 805 (1990).

    Article  Google Scholar 

  14. H.K.D.H. Bhadeshia and J.W. Christian, Metall. Trans. A 21, 767 (1990).

    Article  Google Scholar 

  15. N.H. Van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. Van Der Zwaag, Acta Mater. 53, 5439 (2005).

    Article  Google Scholar 

  16. R. Blondé, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Brück, S. Van Der Zwaag, and N.H. Van Dijk, Acta Mater. 60, 565 (2012).

    Article  Google Scholar 

  17. D. De Knijf, C. Föjer, L.A.I. Kestens, and R. Petrov, Mater. Sci. Eng. A 638, 219 (2015).

    Article  Google Scholar 

  18. D. De Knijf, R. Petrov, C. Föjer, and L.A.I. Kestens, Mater. Sci. Eng. A 615, 107 (2014).

    Article  Google Scholar 

  19. G. Ghosh and G.B. Olson, Acta Metall. Mater. 42, 3361 (1994).

    Article  Google Scholar 

  20. G. Ghosh and G.B. Olson, Acta Metall. Mater. 42, 3371 (1994).

    Article  Google Scholar 

  21. G.N. Haidemenopoulos, A.I. Katsamas, and N. Aravas, Steel Res. Int. 77, 720 (2006).

    Article  Google Scholar 

  22. M.L. Brandt, Bainitic Stabilization of Austenite in Low Alloy Sheet Steels, Doctoral Thesis (Northwestern University, 1997).

  23. J. Gong, Predictive Process Optimization for Fracture Ductility in Automotive TRIP Steels, Doctoral Thesis (Northwestern University, 2013).

  24. R.H. Richman and G.F. Bolling, Metall. Trans. 2, 2451 (1971).

    Article  Google Scholar 

  25. A.K. Behera and G.B. Olson, in International Symposium on New Developments in Advanced High-Strength Sheet Steels (AIST, 2017), pp. 321–329. https://www.aist.org/conference-expositions/technology-training/new-developments-in-ahss/.

  26. ASTM, ASTM Int. E8/E8M-11 1 (2009).

  27. A. Borgenstam, L. Höglund, J. Ågren, and A. Engström, J. Phase Equilib. 21, 269 (2000).

    Article  Google Scholar 

  28. Y. Toji, H. Matsuda, M. Herbig, P.-P. Choi, and D. Raabe, Acta Mater. 65, 215 (2014).

    Article  Google Scholar 

  29. R. Ruhl and M. Cohen, Trans. Metall. Soc. AIME 245, 241 (1969).

    Google Scholar 

  30. D.J. Dyson and B. Holmes, J. Iron Steel Inst. 208, 469 (1970).

    Google Scholar 

  31. Y. Toji, G. Miyamoto, and D. Raabe, Acta Mater. 86, 137 (2015).

    Article  Google Scholar 

  32. E.J. Seo, L. Cho, and B.C. De Cooman, Acta Mater. 107, 354 (2016).

    Article  Google Scholar 

  33. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer, Mater. Sci. Eng. A 438–440, 25 (2006).

    Article  Google Scholar 

  34. D. De Knijf, M.J. Santofimia, H. Shi, V. Bliznuk, C. Föjer, R. Petrov, and W. Xu, Acta Mater. 90, 161 (2015).

    Article  Google Scholar 

  35. W. Li, H. Gao, H. Nakashima, S. Hata, and W. Tian, Int. J. Miner. Metall. Mater. 23, 906 (2016).

    Article  Google Scholar 

  36. G.A. Thomas and J.G. Speer, Mater. Sci. Technol. 30, 998 (2014).

    Article  Google Scholar 

  37. A.K. Behera and G.B. Olson, Scr. Mater. 147, 6 (2018).

    Article  Google Scholar 

  38. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag, Acta Mater. 55, 6713 (2007).

    Article  Google Scholar 

  39. S. Zhang and K.O. Findley, Acta Mater. 61, 1895 (2013).

    Article  Google Scholar 

  40. J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey, Mater. Sci. Eng. A 528, 4516 (2011).

    Article  Google Scholar 

  41. P. Hilkhuijsen, H.J.M. Geijselaers, T.C. Bor, E.S. Perdahcioğlu, A.H. vd Boogaard, and R. Akkerman, Mater. Sci. Eng. A 573, 100 (2013).

    Article  Google Scholar 

  42. P.J. Jacques, F. Delannay, and J. Ladrière, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 32, 2759 (2001).

    Article  Google Scholar 

  43. G.B. Olson and M. Cohen, Metall. Trans. A 7, 1897 (1976).

    Google Scholar 

  44. G.B. Olson and M. Cohen, Metall. Trans. A 7, 1915 (1976).

    Article  Google Scholar 

  45. R.G. Stringfellow, D.M. Parks, and G.B. Olson, Acta Metall. Mater. 40, 1703 (1992).

    Article  Google Scholar 

  46. G.N. Haidemenopoulos and A.N. Vasilakos, J. Alloys Compd. 247, 128 (1997).

    Article  Google Scholar 

  47. L. Wang and J.G. Speer, Metallogr. Microstruct. Anal. 2, 268 (2013).

    Article  Google Scholar 

  48. G. Ghosh and G.B. Olson, J. Phase Equilib. 22, 199 (2001).

    Article  Google Scholar 

  49. J.R. Patel and M. Cohen, Acta Metall. 1, 531 (1953).

    Article  Google Scholar 

  50. G.B. Olson, K. Tsuzaki, and M. Cohen, in Materials Research Society Symposium Proceedings (1987), pp. 129–148.

  51. G.N. Haidemenopoulos, N. Aravas, and I. Bellas, Mater. Sci. Eng. A 615, 416 (2014).

    Article  Google Scholar 

  52. M.J. Santofimia, R.H. Petrov, L. Zhao, and J. Sietsma, Mater. Charact. 92, 91 (2014).

    Article  Google Scholar 

  53. M.C. Somani, D.A. Porter, L.P. Karjalainen, and R.D.K. Misra, Metall. Mater. Trans. A 45, 1247 (2013).

    Article  Google Scholar 

  54. N. Maheswari, S.G. Chowdhury, K.C. Hari Kumar, and S. Sankaran, Mater. Sci. Eng. A 600, 12 (2014).

    Article  Google Scholar 

  55. A. Arlazarov, M. Ollat, J.P. Masse, and M. Bouzat, Mater. Sci. Eng. A 661, 79 (2016).

    Article  Google Scholar 

  56. G.B. Olson, K. Tsuzaki, and M. Cohen, Mat. Res. Soc. Symp. Proc. 57, 129 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge ArcelorMittal Global R&D, East Chicago, Indiana, for financial support and raw materials for the study and help from Dr. Damon Panahi in performing the dilatometer studies. HEXRD experiments were performed by the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) at the Advanced Photon Source (APS). This work made use of the EPIC facility of Northwestern University’s NUANCE Center, which has received support from SHyNE Resource (NSF ECCS-1542205), the MRSEC program (NSF DMR-1720139) at the Materials Research Center, the IIN, the Keck Foundation and the State of Illinois, through the IIN. This work made use of the Central Laboratory for Materials Mechanical Properties supported by the MRSEC program of the National Science Foundation (DMR-1121262) at Northwestern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Behera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, A.K., Olson, G.B. Prediction of Carbon Partitioning and Austenite Stability via Non-equilibrium Thermodynamics in Quench and Partition (Q&P) Steel. JOM 71, 1375–1385 (2019). https://doi.org/10.1007/s11837-019-03369-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03369-z

Navigation