Skip to main content
Log in

Investigation of the Lithium-Containing Aluminum Copper Alloy (AA2099) for the Laser Powder Bed Fusion Process [L-PBF]: Effects of Process Parameters on Cracks, Porosity, and Microhardness

  • Additive Manufacturing of Composites and Complex Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In order to widen the alloy spectrum for the laser powder bed fusion process, apart from the popular Al-Si-based alloys, AlSi10Mg and AlSi12, the precipitation-hardenable AA2099 wrought alloy has been considered in this work. The effect of varied laser power, scanning speed, a preheated base plate (in situ heat treatment) and post-heat treatments on porosity, cracks and microhardness was observed. The results indicate a successfully printed crack-free part with very minimal porosity at 90 W laser power and 550 mm/s scanning speed with microhardness of 72 HV0,1 at a 520°C preheat treatment temperature. The influence of added titanium aluminide powder in crack removal and grain refinement is also reported in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Trapp, A.M. Rubinchik, G. Guss, and M.J. Mathews, Mater. Today 9, 341 (2017).

    Article  Google Scholar 

  2. J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Ekert, O. Prakash, and U. Ramamurty, Acta Mater. 115, 285 (2016).

    Article  Google Scholar 

  3. L. Ruidi, M. Wang, T. Yuan, B. Song, C. Chen, K. Zhou, and P. Cao, Power Technol. 319, 117 (2017).

    Article  Google Scholar 

  4. X. Mujian, D. Gu, G. Yu, D. Dai, H. Chen, and Q. Shi, Int. J. Mach. Tool Manuf. 109, 147 (2016).

    Article  Google Scholar 

  5. P.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Lobber, Z. Wang, A.K. Chaubey, U. Kuhn, and J. Eckert, Mater. Sci. Eng. A 590, 153 (2014).

    Article  Google Scholar 

  6. W. Christian, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach, and R. Poprawe, J. Mater. Process. Technol. 221, 112 (2015).

    Article  Google Scholar 

  7. L. Zheng, Y. Lui, S. Sun, and H. Zhang, Chin. J. Aeronaut. 28, 564 (2015).

    Article  Google Scholar 

  8. L. Zhu, N. Li, and P.R.N. Childs, J. Propul. Power 7, 103 (2018).

    Article  Google Scholar 

  9. E.R. Christopher, D. Bourell, T. Watt, and J. Cohen, Phys. Procedia 83, 909 (2016).

    Article  Google Scholar 

  10. D. Koutny, D. Palousek, L. Pantelejev, C. Hoeller, R. Pichler, L. Tesicky, and J. Kaiser, Materials 11, 298 (2018).

    Article  Google Scholar 

  11. B. Konrad, S. Ullrich, T. Frick, and M. Schmidt, Phys. Proc. 12A, 393 (2011).

    Google Scholar 

  12. H. Zhang, H. Zhu, T. Qi, Z. Hu, and X. Zeng, Mater. Sci. Eng. A 656, 47 (2016).

    Article  Google Scholar 

  13. B. Ahuja, M. Karg, K. Yu, Nagulin, and M. Schmidt, Phys. Procedia 56, 135 (2014).

    Article  Google Scholar 

  14. M.C.H. Karg, B. Ahuja, S. Wiesenmeyer, S.V. Kuryntsev, and M. Schmidt, Micromachines 8, 23 (2017).

    Article  Google Scholar 

  15. M.L. Montero Sistiaga, R. Mertens, B. Vrancken, X. Wang, B.V. Hoorweder, J.-P. Kruth, and J.V. Humbeeck, J. Mater. Process. Technol. 238, 437 (2016).

    Article  Google Scholar 

  16. N. Kaufman, M. Imran, T.M. Wischeropp, C. Emmelmann, S. Siddique, and F. Walther, Phys. Procedia 83, 918 (2016).

    Article  Google Scholar 

  17. L.E. Loh, Z.H. Lui, D.G. Zhang, M. Mapar, S.L. Sing, and C.K. Chua, Virtual Phys. Prototyp. 9, 11 (2014).

    Article  Google Scholar 

  18. Y. Wu, X. Wang, J. Li, and Z. Feng, Mater. Sci. Forum. 850, 575 (2016).

    Article  Google Scholar 

  19. E. Balducci, L. Ceschini, S. Messieri, S. Wenner, and R. Holmestad, Mater. Des. 119, 54 (2017).

    Article  Google Scholar 

  20. E. Balducci, L. Ceschini, and S. Messieri, JOM (2018). https://doi.org/10.1007/s11837-018-3006-x.

    Google Scholar 

  21. F. Zhang, J. Shen, X.D. Yan, J.L. Sun, X.L. Sun, and Y. Yang, Rare Met. 33, 28 (2014).

    Article  Google Scholar 

  22. S. Mishraa, V. Kumar Beura, A. Singha, M. Yadava, and N. Nayan, JOM (2018). https://doi.org/10.1080/02670836.2018.1510074.

    Google Scholar 

  23. B. Zhang, Y. Li, and Q. Bai, Chin. J. Mech. Eng. 30, 515 (2017).

    Article  Google Scholar 

  24. V. Araullo-Peters, B. Gault, F. De Geuser, A. Deschamps, and J.M. Cairney, Acta Mater. 66, 208 (2014).

    Article  Google Scholar 

  25. K.S. Prasad, A.A. Gokhale, A.K. Mukhopadhyay, D. Banerjee, and D.B. Goel, Mater. Sci. Forum 1048, 337 (2000).

    Google Scholar 

  26. R.J. Rioja and J. Lui, Metall. Mater. Trans. A 43A, 3337 (2012).

    Google Scholar 

  27. D. Tsivoulas and P.B. Prangnell, Acta Mater. 77, 16 (2014).

    Article  Google Scholar 

  28. N.J. Harrison, I. Todd, and K. Mumtaz, Acta Mater. 94, 68 (2015).

    Article  Google Scholar 

  29. P. Mercelis and J.P. Kruth, Rapid Prototyp. J. 12, 265 (2006).

    Article  Google Scholar 

  30. M. Zhong, H. Sun, W. Liu, X. Zhu, and J. He, Scr. Mater. 53, 164 (2005).

    Article  Google Scholar 

  31. Z. Tang, Heißrissvermeidung beim Schweißen von Aluminiumlegierungen mit einem Scheibenlaser, Band 53 (Bremen: Strahltechnik BIAS, 2014), pp. 4–15.

  32. G. Schulze, Metallugie des Schweißens, 3rd ed. (New York: Springer), pp. 276–277, 296–299.

  33. J.A. Spittle and A.A. Cushway, Met. Technol. 6, 13 (1983).

    Google Scholar 

  34. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).

    Article  Google Scholar 

  35. K. Kempen, L. Thijs, J. Van Humbeeck, and J.-P. Kruth, Mater. Sci. Technol. 31, 917 (2015).

    Article  Google Scholar 

  36. M. Brandt, S. Sun, M. Leary, S. Feih, J. Elambasseril, and Q. Liu, Adv. Mater. Res. 633, 147 (2013).

    Google Scholar 

  37. M.A. Easton, M. Qian, A. Prasad, and D.H. StJohn, Curr. Opin. Solid State Mater. Sci. 20, 13 (2015).

    Article  Google Scholar 

  38. E. Gumbmann, W. Lefebvre, F. De Geuser, and C. Sigli, Acta Mater. 115, 114 (2016).

    Article  Google Scholar 

  39. C. Wang, G. Min, Q. Lu, and Z. Lu, Int. J. Cast Met. Res. 17, 266 (2014).

    Google Scholar 

  40. W. Cassada, G. Shiflet, and E. Starke Jr, J. Phys. C3, 397 (1987).

    Google Scholar 

  41. Z. Gao, J.Z. Liu, J.H. Chen, S.Y. Duan, Z.R. Lui, W.Q. Ming, and C.L. Wu, J. Alloys Compd. 624, 26 (2015).

    Google Scholar 

  42. J. Huang and A. Ardell, Acta Mater. 115, 114 (2016).

    Google Scholar 

  43. B. Decreus, A. Deschamps, F. De Geuser, P. Donnadieu, C. Sigli, and M. Weyland, Acta Mater. 61, 2218 (2013).

    Article  Google Scholar 

  44. A.B. Nikolay, G.E. Dmitry, and A.A. Aksenkov, Multicomponent Phase Diagram, Applications for Commercial Aluminium Alloys, 1st ed. (Moscow: Elsevier, 2005), pp. 257–260.

    Google Scholar 

Download references

Acknowledgements

The authors thank ACCESS e.V. for their support in the analytics. The authors would like to thank the German Research Foundation DFG for the kind support within the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Raffeis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raffeis, I., Adjei-Kyeremeh, F., Vroomen, U. et al. Investigation of the Lithium-Containing Aluminum Copper Alloy (AA2099) for the Laser Powder Bed Fusion Process [L-PBF]: Effects of Process Parameters on Cracks, Porosity, and Microhardness. JOM 71, 1543–1553 (2019). https://doi.org/10.1007/s11837-019-03367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03367-1

Navigation