Skip to main content
Log in

Engineering Heterogeneous Multiphase Microstructure by Austenite Reverted Transformation Coupled with Ferrite Transformation

  • Advanced High-Strength Steels for Automobiles
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A heterogeneous multiphase medium Mn steel (Fe-10Mn-0.47C-2Al-0.7V, wt.%) consisting of prior austenite, martensite, reverted austenite, and ferrite is, for the first time, realized by both austenite reverted transformation and ferrite transformation. The phase fraction, kinetics, mechanisms, and microstructure evolution during the transformation sequence are systematically investigated. The heterogeneous multiphase medium Mn steel has great potential for high strain hardening by a continuous transformation-induced plasticity effect, grain-size gradient, and stress–strain partitioning. The present work provides a new pathway to design a heterogeneous multiphase microstructure in medium Mn steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.B. He, B. Hu, H.W. Yen, G. Cheng, Z.K. Wang, H.W. Luo, and M.X. Huang, Science 357, 1029 (2017).

    Article  Google Scholar 

  2. S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, and A. Hirata, Nature 544, 460 (2017).

    Article  Google Scholar 

  3. Y.K. Lee and J. Han, Mater. Sci. Technol. 31, 843 (2014).

    Article  Google Scholar 

  4. Y. Ma, Mater. Sci. Technol. 33, 1713 (2017).

    Article  Google Scholar 

  5. D.-W. Suh and S.-J. Kim, Scr. Mater. 126, 63 (2017).

    Article  Google Scholar 

  6. B.B. He, H.W. Luo, and M.X. Huang, Int. J. Plast 78, 173 (2016).

    Article  Google Scholar 

  7. E.J. Seo, L. Cho, and B.C. De Cooman, Metall. Mater. Trans. A 46, 27 (2014).

    Article  Google Scholar 

  8. L. Liu, B.B. He, and M.X. Huang, Adv. Eng. Mater. 20, 1 (2018).

    Google Scholar 

  9. F. Abu-Farha, X. Hu, X. Sun, Y. Ren, L.G. Hector, G. Thomas, and T.W. Brown, Metall. Mater. Trans. A 49, 87 (2018).

    Article  Google Scholar 

  10. J. Hu, L.-X. Du, G.-S. Sun, H. Xie, and R.D.K. Misra, Scr. Mater. 104, 87 (2015).

    Article  Google Scholar 

  11. J. Han, S.-J. Lee, J.-G. Jung, and Y.-K. Lee, Acta Mater. 78, 369 (2014).

    Article  Google Scholar 

  12. R. Alturk, L.G. Hector, C.M. Enloe, F. Abu-Farha, and T.W. Brown, JOM 70, 894 (2018).

    Article  Google Scholar 

  13. W. Wu, Y.-W. Wang, P. Makrygiannis, F. Zhu, G.A. Thomas, L.G. Hector, X. Hu, X. Sun, and Y. Ren, Mater. Sci. Eng., A 711, 611 (2018).

    Article  Google Scholar 

  14. X. Wu and Y. Zhu, Mater. Res. Lett. 5, 527 (2017).

    Article  Google Scholar 

  15. X. Wu, P. Jiang, L. Chen, F. Yuan, and Y.T. Zhu, Proc. Natl. Acad. Sci. U.S.A. 111, 7179 (2014).

    Google Scholar 

  16. K. Lu, Science 345, 1455 (2014).

    Article  Google Scholar 

  17. C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, and D. Raabe, Acta Mater. 81, 386 (2014).

    Article  Google Scholar 

  18. J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.-M. Lee, Y.-K. Lee, S.-I. Lee, and B. Hwang, Acta Mater. 122, 199 (2017).

    Article  Google Scholar 

  19. S.C. Hong and K.S. Lee, Mater. Sci. Eng., A 323, 148 (2002).

    Article  Google Scholar 

  20. H. Dong and X. Sun, Curr. Opin. Solid State Mater. Sci. 9, 269 (2005).

    Article  Google Scholar 

  21. Z. Yang and R. Wang, ISIJ Int. 43, 761 (2003).

    Article  Google Scholar 

  22. N. Nakada, K. Mizutani, T. Tsuchiyama, and S. Takaki, Acta Mater. 65, 251 (2014).

    Article  Google Scholar 

  23. I. Tamura, H. Sekine, and T. Tanaka, Thermomechanical Processing of High-Strength Low-Alloy Steels, 1st ed. (London: Butterworth-Heinemann, 1988), pp. 186–188.

    Google Scholar 

  24. Y. Matsumura and H. Yada, Trans. Iron Steel Inst. Jpn. 27, 492 (1987).

    Article  Google Scholar 

  25. J.-K. Choi, D.-H. Seo, J.-S. Lee, K.-K. Um, and W.-Y. Choo, ISIJ Int. 43, 746 (2003).

    Article  Google Scholar 

  26. Y. Liu, F. Sommer, and E. Mittemeijer, Acta Mater. 51, 507 (2003).

    Article  Google Scholar 

  27. H. Bhadeshia and R. Honeycomb, Steels: Microstructure and Properties, 3rd ed. (London: Edward Arnold Butterworth Heinemann, 2006), pp. 1–20.

    Book  Google Scholar 

  28. T. Gladman, Proc. R. Soc. Lond. A 294, 298 (1966).

    Article  Google Scholar 

  29. B. Garbarz and F. Pickering, Mater. Sci. Technol. 4, 967 (1988).

    Article  Google Scholar 

  30. K.-T. Park, S.Y. Han, D.H. Shin, Y.-K. Lee, K.J. Lee, and K.S. Lee, ISIJ Int. 44, 1057 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

M.X. Huang acknowledges financial support from the National Natural Science Foundation of China (U1764252, U1560204), Research Grants Council of Hong Kong (17255016, 17203014), and Seed Fund for Basic Research of HKU (201711159029, 201611159178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. X. Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., He, B.B. & Huang, M.X. Engineering Heterogeneous Multiphase Microstructure by Austenite Reverted Transformation Coupled with Ferrite Transformation. JOM 71, 1322–1328 (2019). https://doi.org/10.1007/s11837-019-03365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03365-3

Navigation