Skip to main content
Log in

In Situ High-Cycle Fatigue Reveals Importance of Grain Boundary Structure in Nanocrystalline Cu-Zr

  • Deformation and Transitions at Grain Boundaries
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nanocrystalline metals typically have high fatigue strengths but low resistance to crack propagation. Amorphous intergranular films are disordered grain boundary complexions that have been shown to delay crack nucleation and slow crack propagation during monotonic loading by diffusing grain boundary strain concentrations, which suggests they may also be beneficial for fatigue properties. To probe this hypothesis, in situ transmission electron microscopy fatigue cycling is performed on Cu-1 at.% Zr thin films thermally treated to have either only ordered grain boundaries or amorphous intergranular films. The sample with only ordered grain boundaries experienced grain coarsening at crack initiation followed by unsteady crack propagation and extensive nanocracking, whereas the sample containing amorphous intergranular films had no grain coarsening at crack initiation followed by steady crack propagation and distributed plastic activity. Microstructural design for control of these behaviors through simple thermal treatments can allow for the improvement of nanocrystalline metal fatigue toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.M. Youssef, R.O. Scattergood, K.L. Murty, J.A. Horton, and C.C. Koch, Appl. Phys. Lett. 87, 091904 (2005).

    Article  Google Scholar 

  2. C.C. Koch, K.M. Youssef, R.O. Scattergood, and K.L. Murty, Adv. Eng. Mater. 7, 787 (2005).

    Article  Google Scholar 

  3. T.J. Rupert and C.A. Schuh, Acta Mater. 58, 4137 (2010).

    Article  Google Scholar 

  4. R.O. Ritchie, Int. J. Fracture 100, 55 (1999).

    Article  Google Scholar 

  5. T. Hanlon, E.D. Tabachnikova, and S. Suresh, Int. J. Fatigue 27, 1147 (2005).

    Article  Google Scholar 

  6. T. Hanlon, Y.N. Kwon, and S. Suresh, Scr. Mater. 49, 675 (2003).

    Article  Google Scholar 

  7. T.A. Furnish, D.C. Bufford, F. Ren, A. Mehta, K. Hattar, and B.L. Boyce, Scr. Mater. 143, 15 (2018).

    Article  Google Scholar 

  8. T.A. Furnish, A. Mehta, D. Van Campen, D.C. Bufford, K. Hattar, and B.L. Boyce, J. Mater. Sci. 52, 46 (2017).

    Article  Google Scholar 

  9. R.A. Meirom, D.H. Alsem, A.L. Romasco, T. Clark, R.G. Polcawich, J.S. Pulskamp, M. Dubey, R.O. Ritchie, and C.L. Muhlstein, Acta Mater. 59, 1141 (2011).

    Article  Google Scholar 

  10. M.D. Sangid, Int. J. Fatigue 57, 58 (2013).

    Article  Google Scholar 

  11. H.A. Padilla and B.L. Boyce, Exp. Mech. 50, 5 (2010).

    Article  Google Scholar 

  12. K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Mater. 51, 5743 (2003).

    Article  Google Scholar 

  13. F. Mompiou, M. Legros, A. Boé, M. Coulombier, J.P. Raskin, and T. Pardoen, Acta Mater. 61, 205 (2013).

    Article  Google Scholar 

  14. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang, Acta Mater. 51, 387 (2003).

    Article  Google Scholar 

  15. D. Gianola, B. Mendis, X. Cheng, and K. Hemker, Mater. Sci. Eng. A 483, 637 (2008).

    Article  Google Scholar 

  16. L. Wang, T. Xin, D. Kong, X. Shu, Y. Chen, H. Zhou, J. Teng, Z. Zhang, J. Zou, and X.D. Han, Scr. Mater. 134, 95 (2017).

    Article  Google Scholar 

  17. Z.X. Wu, Y.W. Zhang, M.H. Jhon, and D.J. Srolovitz, Acta Mater. 61, 5807 (2013).

    Article  Google Scholar 

  18. P. Liu, S.C. Mao, L.H. Wang, X.D. Han, and Z. Zhang, Scr. Mater. 64, 343 (2011).

    Article  Google Scholar 

  19. S.J. Dillon, M. Tang, W.C. Carter, and M.P. Harmer, Acta Mater. 55, 6208 (2007).

    Article  Google Scholar 

  20. G. Palumbo, S.J. Thorpe, and K.T. Aust, Scr. Met. Mater. 24, 1347 (1990).

    Article  Google Scholar 

  21. A. Khalajhedayati, Z. Pan, and T.J. Rupert, Nat. Commun. 7, 10802 (2016).

    Article  Google Scholar 

  22. Z. Pan and T.J. Rupert, Acta Mater. 89, 205 (2015).

    Article  Google Scholar 

  23. A. Khalajhedayati and T.J. Rupert, JOM 67, 2788 (2015).

    Article  Google Scholar 

  24. L.F. Allard, W.C. Bigelow, M. Jose-Yacaman, D.P. Nackashi, J. Damiano, and S.E. Mick, Microsc. Res. Tech. 72, 208 (2009).

    Article  Google Scholar 

  25. L. Zhong, J. Wang, H. Sheng, Z. Zhang, and S.X. Mao, Nature 512, 177 (2014).

    Article  Google Scholar 

  26. D.C. Bufford, D. Stauffer, W.M. Mook, S.A. Syed Asif, B.L. Boyce, and K. Hattar, Nano Lett. 16, 4946 (2016).

    Article  Google Scholar 

  27. X.K. Zhu, Intl. J. Press. Vess. Pip. 156, 40 (2017).

    Article  Google Scholar 

  28. V. Samaeeaghmiyoni, H. Idrissi, J. Groten, R. Schwaiger, and D. Schryvers, Micron 94, 66 (2017).

    Article  Google Scholar 

  29. K. Hattar, D.C. Bufford, and D.L. Buller, Nucl. Instrum. Methods Phys. Res. Sect. B 338, 56 (2014).

    Article  Google Scholar 

  30. S.K. Lin, Y.L. Lee, and M.W. Lu, Int. J. Fatigue 23, 75 (2001).

    Article  Google Scholar 

  31. R.C. Hugo, H. Kung, J.R. Weertman, R. Mitra, J.A. Knapp, and D.M. Follstaedt, Acta Mater. 51, 1937 (2003).

    Article  Google Scholar 

  32. C.M. Park and J.A. Bain, J. Appl. Phys. 91, 6830 (2002).

    Article  Google Scholar 

  33. J.D. Schuler and T.J. Rupert, Acta Mater. 140, 196 (2017).

    Article  Google Scholar 

  34. Q. Jin, D.S. Wilkinson, and G.C. Weatherly, J. Eur. Ceram. Soc. 18, 2281 (1998).

    Article  Google Scholar 

  35. J.D. Schuler, O.K. Donaldson, and T.J. Rupert, Scr. Mater. 154, 49 (2018).

    Article  Google Scholar 

  36. C.V. Thompson, Annu. Rev. Mater. Sci. 20, 245 (1990).

    Article  Google Scholar 

  37. Y. Yang, B. Imasogie, G.J. Fan, P.K. Liaw, and W.O. Soboyejo, Metall. Mater. Trans. A 39, 1145 (2008).

    Article  Google Scholar 

  38. D. Farkas, M. Willemann, and B. Hyde, Phys. Rev. Lett. 94, 165502 (2005).

    Article  Google Scholar 

  39. R.O. Ritchie, Mater. Sci. Eng., A 103, 15 (1988).

    Article  Google Scholar 

  40. J.K. Shang and R.O. Ritchie, Metall. Trans. A 20, 897 (1989).

    Article  Google Scholar 

  41. R. Ramachandramoorthy, R. Bernal, and H.D. Espinosa, ACS Nano 9, 4675 (2015).

    Article  Google Scholar 

  42. Z. Liu, D. Yu, J. Tang, X. Chen, and X. Wang, Int. J. Press. Vess. Pip. 168, 11 (2018).

    Article  Google Scholar 

  43. M.D. Thouless, J. Am. Ceram. Soc. 71, 408 (1988).

    Article  Google Scholar 

  44. A. Vinogradov, J. Mater. Sci. 42, 1797 (2007).

    Article  Google Scholar 

  45. R. Pippan and A. Hohenwarter, Fatigue Fract. Eng. Mater. Struct. 40, 471 (2017).

    Article  Google Scholar 

  46. C. Laird and G. Smith, Philos. Mag. 7, 847 (1962).

    Article  Google Scholar 

  47. J. Xie, X. Wu, and Y. Hong, Scr. Mater. 57, 5 (2007).

    Article  Google Scholar 

  48. K. Tanaka, Y. Nakai, and M. Yamashita, Int. J. Fracture 17, 519 (1981).

    Google Scholar 

  49. C. Bjerkén and S. Melin, Eng. Frac. Mech. 71, 2215 (2004).

    Article  Google Scholar 

  50. M.Y. Gutkin and I. Ovid’ko, Philos. Mag. Lett. 84, 655 (2004).

    Article  Google Scholar 

  51. S. Suresh, Metall. Trans. A 14, 2375 (1983).

    Article  Google Scholar 

  52. A.M. Gokhale, W.J. Drury, and S. Mishra, in Fractography of Modern Engineering Materials: Composites and Metals, ed. J.E. Masters and L.N. Gilbertson (Philadelphia, PA: ASTM, 1993), p. 3.

  53. D. Farkas, H. Van Swygenhoven, and P. Derlet, Phys. Rev. B Condens. Matter 66, 060101 (2002).

    Article  Google Scholar 

  54. M.D. Sangid, G.J. Pataky, H. Sehitoglu, R.G. Rateick, T. Niendorf, and H.J. Maier, Acta Mater. 59, 7340 (2011).

    Article  Google Scholar 

  55. Y. Zhang, G.J. Tucker, and J.R. Trelewicz, Acta Mater. 131, 39 (2017).

    Article  Google Scholar 

  56. R. Liu, Y. Tian, Z. Zhang, X. An, P. Zhang, and Z. Zhang, Sci. Rep. 6, 27433 (2016).

    Article  Google Scholar 

  57. G.Q. Xu and M.J. Demkowicz, Phys. Rev. Lett. 111, 145501 (2013).

    Article  Google Scholar 

  58. T. Leitner, A. Hohenwarter, and R. Pippan, Mater. Sci. Eng. A 646, 294 (2015).

    Article  Google Scholar 

  59. T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, and D. Raabe, Int. J. Plast 25, 1655 (2009).

    Article  Google Scholar 

  60. A. Singh, L. Tang, M. Dao, L. Lu, and S. Suresh, Acta Mater. 59, 2437 (2011).

    Article  Google Scholar 

  61. L. Liu, J. Wang, S.K. Gong, and S.X. Mao, Sci. Rep. 4, 4397 (2014).

    Article  Google Scholar 

  62. V. Turlo and T.J. Rupert, Acta Mater. 151, 100 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

JDS and TJR were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division under Award DE-SC0014232, and the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. BLB, KH, CMB, and NMH were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division, under FWP 18-013170. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under Contract DE-SC0014664. TEM work was performed at the UC Irvine Materials Research Institute (IMRI). SEM and FIB work was performed at the UC Irvine Materials Research Institute (IMRI) using instrumentation funded in part by the National Science Foundation Center for Chemistry at the Space-Time Limit (CHE-0802913). Additional FIB and TEM work was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE’s National Nuclear Security Administration under Contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the U.S. Department of Energy or of the U.S. government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Rupert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuler, J.D., Barr, C.M., Heckman, N.M. et al. In Situ High-Cycle Fatigue Reveals Importance of Grain Boundary Structure in Nanocrystalline Cu-Zr. JOM 71, 1221–1232 (2019). https://doi.org/10.1007/s11837-019-03361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03361-7

Navigation