Skip to main content
Log in

Interface Facilitated Reorientation of Mg Nanolayers in Mg-Nb Nanolaminates

  • Deformation and Transitions at Grain Boundaries
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Mg/Nb nanolaminates synthesized through vapor deposition techniques exhibit high flow strength without conventional twinning in Mg. In this work, we investigated the influence of laminated microstructures on deformation mechanisms of Mg nanolayers. Using molecular dynamics simulations, we explored that (0001)-oriented Mg layers transform or re-orient to {10\( \bar{1} \)0}-oriented Mg layers through nucleation and growth of {10\( \bar{1} \)2} twins by atomic shuffling, instead of conventional {10\( \bar{1} \)2} twinning shear. Such a reorientation accommodates in-plane compressive strain and out-of-plane tensile strain when Mg/Nb laminates are subjected to compression parallel to the Mg/Nb interfaces. The nucleation of {10\( \bar{1} \)2} twins is promoted at the Mg/Nb interface due to the structural change associated with the glide of interface dislocations. The growth of {10\( \bar{1} \)2} twins is accomplished through migration of basal–prismatic boundaries via nucleation and glide of one-layer and two-layer disconnections associated with atomic shuffling. The results shed light on improving mechanical properties of hexagonal close-packed metals employing laminated structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.G. Partridge, Metall. Rev. 12, 169 (1967).

    Google Scholar 

  2. J.W. Christian and S. Mahajan, Prog. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  3. M. Barnett, Mater. Sci. Eng. A 464, 8 (2007).

    Article  Google Scholar 

  4. Q. Yu, Z.-W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, and E. Ma, Nature 463, 335 (2010).

    Article  Google Scholar 

  5. H. Yoshinaga and R. Horiuchi, Trans. Japan Inst. Metals 5, 14 (1964).

    Article  Google Scholar 

  6. A. Akhtar and E. Teghtsoonian, Acta Metall. 17, 1351 (1969).

    Article  Google Scholar 

  7. V. Vitek and V. Paidar, Dislocations in Solids (2008), vol. 14, p. 439.

  8. M. Yoo, Metall. Trans. A 12, 409 (1981).

    Article  Google Scholar 

  9. P. Cizek and M. Barnett, Scripta Mater. 59, 959 (2008).

    Article  Google Scholar 

  10. D. Ando, J. Koike, and Y. Sutou, Mater. Sci. Eng. A 600, 145 (2014).

    Article  Google Scholar 

  11. Q. Yu, J. Wang, Y. Jiang, R.J. McCabe, N. Li, and C.N. Tomé, Acta Mater. 77, 28 (2014).

    Article  Google Scholar 

  12. A. Jain and S. Agnew, Mater. Sci. Eng. A 462, 29 (2007).

    Article  Google Scholar 

  13. A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra, Int. J. Plast. 27, 688 (2011).

    Article  Google Scholar 

  14. A. Chapuis and J.H. Driver, Acta Mater. 59, 1986 (2011).

    Article  Google Scholar 

  15. B. Mordike and T. Ebert, Mater. Sci. Eng. A 302, 37 (2001).

    Article  Google Scholar 

  16. K. Hantzsche, J. Bohlen, J. Wendt, K. Kainer, S. Yi, and D. Letzig, Scripta Mater. 63, 725 (2010).

    Article  Google Scholar 

  17. M. Furukawa, Z. Horita, M. Nemoto, R. Valiev, and T. Langdon, Acta Mater. 44, 4619 (1996).

    Article  Google Scholar 

  18. K. Kubota, M. Mabuchi, and K. Higashi, J. Mater. Sci. 34, 2255 (1999).

    Article  Google Scholar 

  19. M. Barnett, Z. Keshavarz, A. Beer, and D. Atwell, Acta Mater. 52, 5093 (2004).

    Article  Google Scholar 

  20. T. Al-Samman and X. Li, Mater. Sci. Eng. A 528, 3809 (2011).

    Article  Google Scholar 

  21. S. Yi, J. Bohlen, F. Heinemann, and D. Letzig, Acta Mater. 58, 592 (2010).

    Article  Google Scholar 

  22. Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto, Mater. Trans. 42, 1172 (2001).

    Article  Google Scholar 

  23. E. Abe, Y. Kawamura, K. Hayashi, and A. Inoue, Acta Mater. 50, 3845 (2002).

    Article  Google Scholar 

  24. X. Shao, Z. Yang, and X. Ma, Acta Mater. 58, 4760 (2010).

    Article  Google Scholar 

  25. A. Misra, J. Hirth, and R. Hoagland, Acta Mater. 53, 4817 (2005).

    Article  Google Scholar 

  26. J. Wang, R. Hoagland, J. Hirth, and A. Misra, Acta Mater. 56, 5685 (2008).

    Article  Google Scholar 

  27. A. Misra and R. Hoagland, J. Mater. Sci. 42, 1765 (2007).

    Article  Google Scholar 

  28. A. Misra, M. Verdier, Y. Lu, H. Kung, T. Mitchell, M. Nastasi, and J. Embury, Scripta Mater. 39, 555 (1998).

    Article  Google Scholar 

  29. T.M. Pollock, Science 328, 986 (2010).

    Article  Google Scholar 

  30. J. Wang and A. Misra, Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).

    Article  Google Scholar 

  31. J. Carpenter, T. Nizolek, R. McCabe, S. Zheng, J. Scott, S. Vogel, N. Mara, T. Pollock, and I. Beyerlein, Mater. Res. Lett. 3, 50 (2015).

    Article  Google Scholar 

  32. B. Ham and X. Zhang, Mater. Sci. Eng. A 528, 2028 (2011).

    Article  Google Scholar 

  33. S. Pathak, N. Velisavljevic, J.K. Baldwin, M. Jain, S. Zheng, N.A. Mara, and I.J. Beyerlein, Sci. Rep. 7, 8264 (2017).

    Article  Google Scholar 

  34. A. Kumar, I.J. Beyerlein, and J. Wang, Appl. Phys. Lett. 105, 071602 (2014).

    Article  Google Scholar 

  35. Y. Chen, S. Shao, X.-Y. Liu, S.K. Yadav, N. Li, N.A. Mara, and J. Wang, Acta Mater. 126, 552 (2017).

    Article  Google Scholar 

  36. S.K. Yadav, S. Shao, Y. Chen, J. Wang, and X.-Y. Liu, J. Mater. Sci. 53, 5733 (2018).

    Article  Google Scholar 

  37. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, Acta Mater. 51, 2055 (2003).

    Article  Google Scholar 

  38. S.R. Agnew and Ö. Duygulu, Int. J. Plast. 21, 1161 (2005).

    Article  Google Scholar 

  39. X.-Y. Liu, J.B. Adams, F. Ercolessi, and J.A. Moriarty, Model. Simul. Mater. Sci. Eng. 4, 293 (1996).

    Article  Google Scholar 

  40. G. Ackland and R. Thetford, Philos. Mag. A 56, 15 (1987).

    Article  Google Scholar 

  41. W.G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  Google Scholar 

  42. S. Nosé, J. Chem. Phys. 81, 511 (1984).

    Article  Google Scholar 

  43. R. Zhang, J. Wang, I. Beyerlein, and T. Germann, Scripta Mater. 65, 1022 (2011).

    Article  Google Scholar 

  44. M. Gong, G. Liu, J. Wang, L. Capolungo, and C.N. Tomé, Acta Mater. 155, 187 (2018).

    Article  Google Scholar 

  45. J. Wang, S. Yadav, J. Hirth, C. Tomé, and I. Beyerlein, Mater. Res. Lett. 1, 126 (2013).

    Article  Google Scholar 

  46. B.-Y. Liu, J. Wang, B. Li, L. Lu, X.-Y. Zhang, Z.-W. Shan, J. Li, C.-L. Jia, J. Sun, and E. Ma, Nat. Commun. 5, 3297 (2014).

    Article  Google Scholar 

  47. A. Ostapovets and A. Serra, Philos. Mag. 94, 2827 (2014).

    Article  Google Scholar 

  48. B. Xu, L. Capolungo, and D. Rodney, Scripta Mater. 68, 901 (2013).

    Article  Google Scholar 

  49. J. Wang, L. Liu, C. Tomé, S. Mao, and S. Gong, Mater. Res. Lett. 1, 81 (2013).

    Article  Google Scholar 

  50. C.D. Barrett and H. El Kadiri, Acta Mater. 63, 1 (2014).

    Article  Google Scholar 

  51. J. Hirth, J. Wang, and C. Tomé, Prog. Mater. Sci. 83, 417 (2016).

    Article  Google Scholar 

  52. J. Hirth, R. Pond, R. Hoagland, X.-Y. Liu, and J. Wang, Prog. Mater. Sci. 58, 749 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nebraska Center for Energy Sciences Research which is a collaboration between the Nebraska Public Power District (NPPD) and the University of Nebraska-Lincoln (UNL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Gong, M.Y., Shao, S. et al. Interface Facilitated Reorientation of Mg Nanolayers in Mg-Nb Nanolaminates. JOM 71, 1215–1220 (2019). https://doi.org/10.1007/s11837-019-03360-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03360-8

Navigation