Skip to main content
Log in

Synthesis of Coarse-Grained Tungsten Carbide Directly from Scheelite/Wolframite by Carbothermal Reduction and Crystallization

  • Design, Development, and Manufacturing of Refractory Metals & Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A novel method is proposed in this study to synthesize coarse-grained tungsten carbide (WC) directly from scheelite/wolframite concentrates. The synthetic process was divided into two parts, carburization and crystallization. WC was enriched in iron melt with the increase of temperature and further purified by crystallizing during the cooling process. The thermodynamics calculation for the reduction process and phase diagram analysis for crystallization were investigated. The scanning microscope (SEM) showed that the obtained sample was on the millimeter scale with a tri-prism shape, and all peaks detected by x-ray diffraction matched well with the WC structure. This method will shorten the WC preparation process greatly, and the obtained coarse-crystalline WC may have potential application in conventional cemented carbide, especially for mining and construction tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Medeiros, S. Oliveira, C. Souza, A. Silva, U. Gomes, and J. Souza, Mater. Sci. Eng. A 58–62, 315 (2001).

    Google Scholar 

  2. Z. Zhao, Y. Liang, and H. Li, Int. J. Refract. Met. Hard Mater. 289–292, 29 (2011).

    Google Scholar 

  3. M. Marashi, J. Khaki, and S. Zebarjad, Int. J. Refract. Met. Hard Mater. 177–179, 30 (2012).

    Google Scholar 

  4. J. Gomes, A. Raddatz, and T. Carnahan, JOM 29–32, 12 (1985).

    Google Scholar 

  5. E. Smith, J. Cryst. Growth 75–79, 89 (1988).

    Google Scholar 

  6. R. Polini, E. Palmieri, and G. Marcheselli, Int. J. Refract. Met. Hard Mater. 289–300, 51 (2015).

    Google Scholar 

  7. A. Kumar, K. Singh, and O. Pandey, Int. J. Refract. Met. Hard Mater. 555–558, 29 (2011).

    Google Scholar 

  8. N. Welham, AIChE J. 68–71, 46 (2000).

    Google Scholar 

  9. M. Sakaki, A. Behnami, and M. Bafghi, Int. J. Refract. Met. Hard Mater. 142–147, 44 (2014).

    Google Scholar 

  10. H. Singh and O. Pandey, Ceram. Int. 10481–10487, 41 (2015).

    Google Scholar 

  11. H. Singh and O. Pandey, Ceram. Int. 785–790, 39 (2013).

    Google Scholar 

  12. L. Niu, M. Hojamberdiev, and Y. Xu, J. Mater. Process. Technol. 1986–1990, 210 (2010).

    Google Scholar 

  13. L. Niu, X. Wang, and Z. Fan, J. Wuhan Univ. Technol. Mater. Sci. Ed. 449-454, 28 (2013).

    Google Scholar 

  14. J. Chi, H. Li, J. Zhao, S. Wang, M. Li, Q. Ji, and J. Li, J. Mater. Eng. Perform. 3859–3866, 23 (2014).

    Google Scholar 

  15. I. Konyashin, F. Schäfer, R. Cooper, B. Ries, J. Mayer, and T. Weirich, Int. J. Refract. Met. Hard Mater. 225–232, 23 (2005).

    Google Scholar 

  16. F. Sun, X. Chen, and Z. Zhao, Ceram. Int. 1434–1437, 44 (2018).

    Google Scholar 

  17. A. Roine, HSC Chem. (2006).

  18. S. Bolokang, C. Banganayi, and M. Phasha, Int. J. Refract. Met. Hard Mater. 211–216, 28 (2010).

    Google Scholar 

  19. R. Yang, T. Xing, R. Xu, and M. Li, Int. J. Refract. Met. Hard Mater. 138–140, 29 (2011).

    Google Scholar 

  20. K. MacKenzie, J. Temuujin, C. McCammon, and M. Senna, J. Eur. Ceram. Soc. 2581–2585, 26 (2006).

    Google Scholar 

  21. A. Koutsospyros, W. Braida, C. Christodoulatos, D. Dermatas, and N. Strigul, J. Hazard. Mater. 1–19, 136 (2006).

    Google Scholar 

  22. C. Hanyaloglu, B. Aksakal, and J. Bolton, Mater. Charact. 315–322, 47 (2001).

    Google Scholar 

  23. K. Korniyenko, In Iron Systems, Part 2: Selected Systems from Al-B-Fe to C-Co-Fe (Berlin: Springer, Berlin Heidelberg, 2008), pp. 476–512.

    Book  Google Scholar 

  24. Y. Liao and Z. Zhao, JOM 581–586, 70 (2018).

    Google Scholar 

  25. F. Tamura and H. Suito, Metall. Trans. B 121–130, 24 (1993).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Key Program, Project 51334008) and Program for Changjiang Scholars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwei Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, F., Chen, X. & Zhao, Z. Synthesis of Coarse-Grained Tungsten Carbide Directly from Scheelite/Wolframite by Carbothermal Reduction and Crystallization. JOM 72, 340–346 (2020). https://doi.org/10.1007/s11837-019-03345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03345-7

Navigation