Skip to main content
Log in

Novel Alkaline Method for the Preparation of Low-Chromium Magnesia

  • Design, Development, and Manufacturing of Refractory Metals & Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The typical method for the preparation of chromium-magnesia is by energy-consuming grinding, but the pollution of Cr6+ ions is a problem. However, the chromium-magnesia refractory is still irreplaceable due to its outstanding performance. In this regard, low-chromium magnesia was prepared by the alkaline chromium precipitation method from cheap light-burned magnesia. The impurities in the light-burned magnesia was removed in order to avoid the formation of Cr6+. The chromium was precipitated directly on the light-burned magnesia surface without the grinding process. The low-chromium magnesia was obtained after the calcination. The reaction temperature, solid content, reaction time and stirring speed were examined and low-chromium magnesia with Cr3+ 0.4%, MgO 98.5% was obtained. The effect of temperature on the surface tomography of low-chromium magnesia was also discussed. The present novel alkaline method should be a promising way for the preparation of low-chromium magnesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.Y. Kim, S.Y. Yoo, S.M. Kim, C.S. Ha, and J.M. Park, Am. Ceram. Soc. Bull. 84, 9201 (2005).

    Google Scholar 

  2. J.P. Bennett, K.S. Kwong, C.P. Powell, H. Thomas, and A.V. Petty Jr, In 20th Annual Conference on Fossil Energy Materials, (Knoxville, TN, US, 2007), pp. 200–206.

  3. J. Li, H. Zhao, P. Zhao, J. Cui, S. Mu, and Y. Lv, Ceram. Int. 42, 18579 (2016). https://doi.org/10.1016/j.ceramint.2016.08.200.

    Article  Google Scholar 

  4. H. Li, J. Liu, H. Feng, and L. Zhang, China’s Refract. 4, 2 (2014). https://doi.org/10.3969/j.issn.1004-4493.2014.04.001

    Article  Google Scholar 

  5. B. Sahin and C. Aksel, J. Eur. Ceram. Soc. 32, 49 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.07.024.

    Article  Google Scholar 

  6. S. Ritwik, K.D. Samir, and B. Goutam, J. Eur. Ceram. Soc. 22, 1243 (2002). https://doi.org/10.1016/s0955-2219(01)00446-0.

    Article  Google Scholar 

  7. N.N. Tupotilov, V.V. Ostrikov, and A.Y. Kornev, Chem. Technol. Fuels Oils 44, 29 (2008). https://doi.org/10.1007/s10553-008-0012-7.

    Article  Google Scholar 

  8. S. Fellahi, N. Chikhi, and M. Bakar, J. Appl. Polym. Sci. 82, 861 (2001). https://doi.org/10.1002/app.1918.

    Article  Google Scholar 

  9. N.M. Deraz, Ceram. Int. 38, 511 (2012). https://doi.org/10.1016/j.ceramint.2011.07.036.

    Article  Google Scholar 

  10. X. Liu, Y. Feng, H. Li, P. Zhang, and P. Wang, J. Cent. South Univ. (Sci. Technol.) 42, 3912 (2011).

    Google Scholar 

  11. H. Xu, Y. Cai, X. Shi, and G. Pi, J. Nat. Sci. Hunan Norm. Univ. 29, 52 (2006). https://doi.org/10.3969/j.issn.1000-2537.2006.01.013.

    Article  Google Scholar 

  12. H. Xu, Y. Cai, B. Chen, and Y. Su, J. Cent. South Univ. 37, 698 (2006). https://doi.org/10.3969/j.issn.1672-7207.2006.04.014.

    Article  Google Scholar 

  13. H. Xu, W. Liu, X. Yang, X. Shi, S. Chen, and L. Yu, J. Cent. South Univ. (Sci. Technol.) 42, 2204 (2011).

    Google Scholar 

  14. W. Liu, H.Xu, X. Shi, and X. Yang, In XVII Balkan Mineral Processing Congress (BMPC-2017) (Antalya, Turkey, 2017), pp. 513–521.

  15. W. Liu, H. Xu, X. Yang, X. Chang, and Y. Chen, J. Cent. South Univ. 19, 2751 (2012). https://doi.org/10.1007/s11771-012-1337-2.

    Article  Google Scholar 

  16. H.R. Zargar, C. Oprea, G. Oprea, and T. Troczynski, Ceram. Int. 38, 6235 (2012). https://doi.org/10.1016/j.ceramint.2012.04.077.

    Article  Google Scholar 

  17. J.W. Nelson and I.B. Cutler, J. Am. Ceram. Soc. 41, 406 (1958). https://doi.org/10.1111/j.1151-2916.1958.tb13512.x.

    Article  Google Scholar 

  18. X. Shi, F. Wang, and S. Xiong, Nonferrous Met. Sci. Eng. 3, 54 (2016). https://doi.org/10.13264/j.cnki.ysjskx.2016.03.010.

    Article  Google Scholar 

  19. Y. Deng, H. Wang, and H. Zhao, Ceram. Int. 34, 573 (2008). https://doi.org/10.1016/j.ceramint.2006.12.002.

    Article  Google Scholar 

  20. W. Ren, B. Xue, C. Lu, Z. Zhang, Y. Zhang, and L. Jiang, J. Clean. Prod. 135, 214 (2016). https://doi.org/10.1016/j.jclepro.2016.06.118.

    Article  Google Scholar 

  21. H. Xu, W. Liu, R. Dong, X. Yang, X. Shi, and N. Zhao, Nonferrous Met. (Extr. Metall.) 20 (2011). https://doi.org/10.3969/j.issn.1007-7545.2011.01.006.

  22. Y. Liang, Y. Yang, and W. Mao, Rock Miner. Anal. 26, 73 (2007). https://doi.org/10.3969/j.issn.0254-5357.2007.01.018.

    Article  Google Scholar 

  23. B. Müller, ChemEQL V3.2, (Duebendorf: Swiss Federal Institute for Environmental Science and Technology, 1996), pp. 1–6.

  24. Y.C. Akira, In Supplement of China’s RefractoriesProceeding of the Fifth International Symposium on Refractories (2007), pp. 28–30.

  25. W. Liu, H. Xu, X. Shi, X. Yang, Y. Chen, J. Cheng, and G. Li, Chin. J. Nonferrous Met. 22, 2656 (2012).

    Google Scholar 

  26. W. Liu, H. Xu, J. Cheng, G. Li, X. Shi, and X. Yang, Mater. Rev. 26, 313 (2012). https://doi.org/10.3969/j.issn.1005-023X.2012.z1.084.

    Article  Google Scholar 

  27. H. Xu, J. Cheng, G. Li, X. Yang, and W. Liu, Mater. Rev. 27, 104 (2013). https://doi.org/10.3969/j.issn.1005-023X.2013.16.028.

    Article  Google Scholar 

  28. T.A. Clancy, University of Missouri-Rolla, 4 (1968).

  29. Y. Sun, H. Qian, J. Liu, and B. Yu, Non Met. Mines 28, 54 (2005). https://doi.org/10.3969/j.issn.1000-8098.2005.04.020.

    Article  Google Scholar 

  30. D.J. Bellamy and P.H. Clarke, Nature 218, 1180 (1968). https://doi.org/10.1038/2181180a0.

    Article  Google Scholar 

  31. D. Hou and H. Li, J. Salt Lake Res. 16, 45 (2008).

    Google Scholar 

  32. K.P. Ananthapadmanabhan and P. Somasundaran, Colloids Surf. 13, 151 (1985). https://doi.org/10.1016/0166-6622(85)80014-7.

    Article  Google Scholar 

  33. D.P. Rai, B.M. Sass, and D.A. Moore, Inorg. Chem. 26, 345 (1987). https://doi.org/10.1021/ic00250a002.

    Article  Google Scholar 

  34. L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, and N.G. Jones, Acta Mater. 122, 11 (2017). https://doi.org/10.1016/j.actamat.2016.09.032.

    Article  Google Scholar 

  35. R.S. Mishra, N. Kumar, and M. Komarasamy, Mater. Sci. Technol. 31, 1259 (2015). https://doi.org/10.1179/1743284715Y.0000000050.

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this research by National Natural Science Foundation of China (51574286) and China Postdoctoral Science Foundation (2016M592448) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiping Liu or Xuming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Xu, H., Liu, W. et al. Novel Alkaline Method for the Preparation of Low-Chromium Magnesia. JOM 72, 333–339 (2020). https://doi.org/10.1007/s11837-018-3284-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3284-3

Navigation