Skip to main content
Log in

Nanoscratch Behavior of Metallic Glass/Crystalline Nanolayered Composites

  • Advanced Nanocomposite Materials: Structure-Property Relationships
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nanolayered metallic glass/crystalline composites provide an effective structure for improving the ductility of metallic glasses while maintaining their outstanding strength. The combination of high strength and ductility make these nanocomposites promising materials as wear-resistant coatings. In this work, we experimentally investigated the mechanical properties and nanoscratch behavior of CuZr/Zr metallic glass/crystalline nanolayers. The scratch resistance was highest for the monolithic CuZr, and diminished with decreasing layer thickness for nanolayered coatings, although hardness and elastic modulus were independent of layer thickness. The nanocomposite with a layer thickness of 10 nm did not show any signs of failure in spite of compressive strain exceeding 80%. The low shear strength of the CuZr/Zr interface and strain hardening of Zr layers can explain the layer thickness-dependent scratch resistance and outstanding damage tolerance observed. Layered metallic glass/crystalline nanocomposites combine high hardness and resistance to fracture, providing a new design space for the development of effective wear-resistant coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.H. Wang, C. Dong, and C.H. Shek, Mater. Sci. Eng. R 44, 45 (2004).

    Article  Google Scholar 

  2. A. Inoue and A. Takeuchi, Acta Mater. 59, 2243 (2011).

    Article  Google Scholar 

  3. M. Telford, Mater. Today 7, 36 (2004).

    Article  Google Scholar 

  4. J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, and C. Rullyani, Thin Solid Films 520, 5097 (2012).

    Article  Google Scholar 

  5. J. Schroers, Q. Pham, and A. Desai, J. Microelectromech. Syst. 16, 240 (2007).

    Article  Google Scholar 

  6. J.S. Langer, Scr. Mater. 54, 375 (2006).

    Article  Google Scholar 

  7. T.C. Hufnagel, C.A. Schuh, and M.L. Falk, Acta Mater. 109, 375 (2016).

    Article  Google Scholar 

  8. D.C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M.D. Demetriou, and W.L. Johnson, Nature 451, 1085 (2008).

    Article  Google Scholar 

  9. Y. Wang, J. Li, A.V. Hamza, and T.W. Barbee, Proc. Natl. Acad. Sci. USA 104, 11155 (2007).

    Article  Google Scholar 

  10. W. Guo, E. Jägle, J. Yao, V. Maier, S. Korte-Kerzel, J.M. Schneider, and D. Raabe, Acta Mater. 80, 94 (2014).

    Article  Google Scholar 

  11. M.C. Liu, J.C. Huang, H.S. Chou, Y.H. Lai, C.J. Lee, and T.G. Nieh, Scr. Mater. 61, 840 (2009).

    Article  Google Scholar 

  12. J.Y. Zhang, Y. Liu, J. Chen, Y. Chen, G. Liu, X. Zhang, and J. Sun, Mater. Sci. Eng. A 552, 392 (2012).

    Article  Google Scholar 

  13. M.C. Liu, C.J. Lee, Y.H. Lai, and J.C. Huang, Thin Solid Films 518, 7295 (2010).

    Article  Google Scholar 

  14. J. Musil, Surf. Coat. Technol. 125, 322 (2000).

    Article  Google Scholar 

  15. S.Y. Kuan, H.S. Chou, M.C. Liu, X.H. Du, and J.C. Huang, Intermetallics 18, 2453 (2010).

    Article  Google Scholar 

  16. A.M. Hodge and T.G. Nieh, Intermetallics 12, 741 (2004).

    Article  Google Scholar 

  17. X. Li and B. Bhushan, Mater. Charact. 48, 11 (2002).

    Article  Google Scholar 

  18. M. Callisti and T. Polcar, Acta Mater. 124, 247 (2017).

    Article  Google Scholar 

  19. Z.T. Wang, K.Y. Zeng, and Y. Li, Scr. Mater. 65, 747 (2011).

    Article  Google Scholar 

  20. M. Apreutesei, P. Steyer, L. Joly-Pottuz, A. Billard, J. Qiao, S. Cardinal, F. Sanchette, J.M. Pelletier, and C. Esnouf, Thin Solid Films 561, 53 (2014).

    Article  Google Scholar 

  21. C. Yuan, R. Fu, F. Zhang, X. Zhang, and F. Liu, Mater. Sci. Eng. A 565, 27 (2013).

    Article  Google Scholar 

  22. J. Gong, T. Benjamin Britton, M.A. Cuddihy, F.P.E. Dunne, and A.J. Wilkinson, Acta Mater. 96, 249 (2015).

    Article  Google Scholar 

  23. D. Tabor, The Hardness of Metals (Oxford: Oxford University Press, 2000).

    Google Scholar 

  24. A. Misra, J.P. Hirth, and R.G. Hoagland, Acta Mater. 53, 4817 (2005).

    Article  Google Scholar 

  25. J. Wang, Q. Zhou, S. Shao, and A. Misra, Mater. Res. Lett. 5, 1 (2017).

    Article  Google Scholar 

  26. M.C. Liu, J.C. Huang, Y.T. Fong, S.P. Ju, X.H. Du, H.J. Pei, and T.G. Nieh, Acta Mater. 61, 3304 (2013).

    Article  Google Scholar 

  27. A.C. Fischer-Cripps, Nanoindentation, 2nd ed. (New York: Springer, 2004).

    Book  Google Scholar 

  28. M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  Google Scholar 

  29. F.X. Liu, F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic, and P.K. Liaw, Surf. Coat. Technol. 203, 3480 (2009).

    Article  Google Scholar 

  30. C.-C. Yu, C.M. Lee, J.P. Chu, J.E. Greene, and P.K. Liaw, APL Mater. 4, 116101 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Scientific and Technological Research Council of Turkey—CAREER Award #116M429 and METU-BAP Project #08-11-2016-072. We thank METU Central Laboratory, Koç University KUYTAM, and Bilkent University UNAM for their support in characterization measurements and Dr. Eren Kalay for useful discussions. TEM work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sezer Özerinç.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abboud, M., Motallebzadeh, A., Verma, N. et al. Nanoscratch Behavior of Metallic Glass/Crystalline Nanolayered Composites. JOM 71, 593–601 (2019). https://doi.org/10.1007/s11837-018-3270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3270-9

Navigation