Skip to main content
Log in

Synthesis of Amorphous/Crystalline Laminated Metals via Accumulative Roll Bonding

  • Advanced Nanocomposite Materials: Structure-Property Relationships
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Bulk metallic glasses (BMG) are best known for their high strength and hardness; however, due to their limited tensile plasticity, they are undesirable for many structural applications. Nano-laminated amorphous/crystalline metals fabricated via deposition techniques have been shown to deform homogeneously while demonstrating extraordinary mechanical properties, including high strength and ductility; however, their fabrication is limited in size and scalability potential. Here, accumulative roll bonding has been demonstrated as a scalable fabrication technique for the processing of nanolaminated Zr-based BMG/Ni composites. The rolling was performed at elevated temperatures, utilizing the thermoplastic formability of the BMG in its supercooled liquid region. Microhardness measurements were utilized to investigate the thermo-mechanical history of the BMG phase. Refined BMG layers with thicknesses as small as 34 nm have been characterized using transmission electron microscopy techniques. The resulting amorphous/crystalline interface has been demonstrated to have an effective interface width of 3–4 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.S. Steif, F. Spaepen, and J.W. Hutchinson, Acta Metall. 30, 447 (1982).

    Article  Google Scholar 

  2. F. Spaepen, Acta Metall. 25, 407 (1977).

    Article  Google Scholar 

  3. W.F. Wu, Y. Li, and C.A. Schuh, Philos. Mag. 88, 71 (2008).

    Article  Google Scholar 

  4. F.X. Liu, P.K. Liaw, G.Y. Wang, C.L. Chiang, D.A. Smith, P.D. Rack, J.P. Chu, and R.A. Buchanan, Intermetallics 14, 1014 (2006).

    Article  Google Scholar 

  5. C.A. Schuh, A.C. Lund, and T.G. Nieh, Acta Mater. 52, 5879 (2004).

    Article  Google Scholar 

  6. C.A. Volkert, A. Donohue, and F. Spaepen, J. Appl. Phys. 103, 083539 (2008).

    Article  Google Scholar 

  7. D. Jang and J.R. Greer, Nat. Mater. 9, 215 (2010).

    Article  Google Scholar 

  8. J.-Y. Kim, D. Jang, and J.R. Greer, Adv. Funct. Mater. 21, 4550 (2011).

    Article  Google Scholar 

  9. Y. Cui, P. Huang, F. Wang, T.J. Lu, and K.W. Xu, Thin Solid Films 584, 270 (2015).

    Article  Google Scholar 

  10. C. Brandl, T.C. Germann, and A. Misra, Acta Mater. 61, 3600 (2013).

    Article  Google Scholar 

  11. B. Cheng and J.R. Trelewicz, Acta Mater. 153, 314 (2018).

    Article  Google Scholar 

  12. Y. Wang, J. Li, A.V. Hamza, and T.W. Barbee, Proc. Natl. Acad. Sci. 104, 11155 (2007).

    Article  Google Scholar 

  13. I.J. Beyerlein, J.R. Mayeur, S. Zheng, N.A. Mara, J. Wang, and A. Misra, Proc. Natl. Acad. Sci. 111, 4386 (2014).

    Article  Google Scholar 

  14. L.F. Zeng, R. Gao, Q.F. Fang, X.P. Wang, Z.M. Xie, S. Miao, T. Hao, and T. Zhang, Acta Mater. 110, 341 (2016).

    Article  Google Scholar 

  15. K. Mori, N. Bay, L. Fratini, F. Micari, and A.E. Tekkaya, CIRP Ann. 62, 673 (2013).

    Article  Google Scholar 

  16. N. Bay, J. Eng. Ind. 101, 121 (1979).

    Article  Google Scholar 

  17. A. Anghelus, M.-N. Avettand-Fènoël, C. Cordier, and R. Taillard, J. Alloys Compd. 631, 209 (2015).

    Article  Google Scholar 

  18. D. East, M.A. Gibson, D. Liang, and J.-F. Nie, Metall. Mater. Trans. A 44, 2010 (2013).

    Article  Google Scholar 

  19. T. Zhang, A. Inoue, and T. Masumoto, Mater. Trans., JIM 32, 1005 (1991).

    Article  Google Scholar 

  20. W.C. Fan, C.R. Drumm, S.B. Roeske, and G.J. Scrivner, IEEE Trans. Nucl. Sci. 43, 2790 (1996).

    Article  Google Scholar 

  21. S.N. Mathaudhu, Fabrication of Amorphous Metal Matrix Composites by Severe Plastic Deformation (College Station: Texas A&M University, 2006).

    Google Scholar 

  22. D. Wang, G. Liao, J. Pan, Z. Tang, P. Peng, L. Liu, and T. Shi, J. Alloys Compd. 484, 118 (2009).

    Article  Google Scholar 

  23. Z. Zhang and J. Xie, Mater. Sci. Eng., A 407, 161 (2005).

    Article  Google Scholar 

  24. T. Nagase and Y. Umakoshi, Mater. Trans. 45, 13 (2004).

    Article  Google Scholar 

  25. J. Saida, R. Yamada, and M. Wakeda, Appl. Phys. Lett. 103, 221910 (2013).

    Article  Google Scholar 

  26. U. Ramamurty, S. Jana, Y. Kawamura, and K. Chattopadhyay, Acta Mater. 53, 705 (2005).

    Article  Google Scholar 

  27. H.S. Kim, Scr. Mater. 48, 43 (2003).

    Article  Google Scholar 

  28. G. Anne, M.R. Ramesh, H.S. Nayaka, and S.B. Arya, Perspect. Sci. 8, 104 (2016).

    Article  Google Scholar 

  29. S.H.S. Ebrahimi, K. Dehghani, J. Aghazadeh, M.B. Ghasemian, and S. Zangeneh, Mater. Sci. Eng., A 718, 311 (2018).

    Article  Google Scholar 

  30. Y. Kawamura, T. Shibata, A. Inoue, and T. Masumoto, Appl. Phys. Lett. 69, 1208 (1996).

    Article  Google Scholar 

  31. W.F. Hosford and R.M. Caddell, Metal Forming (Cambridge: Cambridge University Press, 2007).

    Book  Google Scholar 

  32. A. Mozaffari, H. Danesh Manesh, and K. Janghorban, J. Alloys Compd. 489, 103 (2010).

    Article  Google Scholar 

  33. H. Yu, A.K. Tieu, C. Lu, X. Liu, A. Godbole, H. Li, C. Kong, and Q. Qin, Sci. Rep. 4, 5017 (2015).

    Article  Google Scholar 

  34. F. Shimizu, S. Ogata, and J. Li, Acta Mater. 54, 4293 (2006).

    Article  Google Scholar 

  35. S.D. Feng, L. Li, K.C. Chan, L. Qi, L. Zhao, L.M. Wang, and R.P. Liu, J. Alloys Compd. 770, 896 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

Prof. Irene Beyerlein of UC Santa Barbara is acknowledged for useful conversations on roll-bonding of the investigated materials. This work was supported in part by the University of California, Riverside and NSF CMMI Grant 1550986. Douglas Hofmann acknowledges support from the Presidential Early Career Award. Part of this research was done at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsements by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. Electron microscopy and FIB was performed on FEI NNS450 SEM, FEI Titan Themis 300 STEM and FEI Quanta 3D 200i FIB/SEM in CFAMM at UC Riverside.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suveen N. Mathaudhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrezaei, S., Hofmann, D.C. & Mathaudhu, S.N. Synthesis of Amorphous/Crystalline Laminated Metals via Accumulative Roll Bonding. JOM 71, 585–592 (2019). https://doi.org/10.1007/s11837-018-3269-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3269-2

Navigation