Skip to main content
Log in

Low-Field Alignment of Anisotropic Bonded Magnets for Additive Manufacturing of Permanent Magnet Motors

  • Energy Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Additive manufacturing techniques for fabricating bonded magnets have the potential to reduce manufacturing cost and time-to-market of products and address the criticality of rare-earth elements (REEs), which is a concern for economic design of dependent applications such as permanent magnet machines. We investigated the magnetic alignment of anisotropic bonded magnet material comprising 65 vol.% Nd-Fe-B in nylon-12 produced by extrusion in a 20-W brushless direct current surface permanent magnet motor for submersible water pump application using finite element analysis. The results predict that sufficient alignment for this application could be obtained at low alignment fields (μ0H ≤ 1 T) with a reduction in the volume of critical materials by up to 40% compared with isotropic permanent magnets. This demonstrates the economic feasibility of incorporating a magnetic alignment field source into additive manufacturing systems for bonded magnets, and the potential of aligned anisotropic bonded magnets to address REE criticality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.-C. Lee and T.-U. Jung, 2012 IEEE Vehicle Power and Propulsion Conference (Seoul, South Korea, 2012), pp. 48–50.

  2. S. Sashidhar and B.G. Fernandes, IEEE Trans. Ind. Electron. 64, 104 (2016).

    Article  Google Scholar 

  3. S. Sashidhar and B.G. Fernandes, 2015 IEEE International Conference on Industrial Technology (ICIT) (Seville, Spain, 2015), pp. 671–676.

  4. S.F. Rabbi, M.A. Rahman, and S. Butt, 2014 Oceans—St. John’s (St. John’s, Canada, 2014) pp. 260–264.

  5. Rep. No. DOE/PI-0009, U.S. Department of Energy, Oak Ridge, TN, January 2011.

  6. K.V. Wong and A. Hernandez, ISRN Mech. Eng. 2012, 1 (2012).

    Article  Google Scholar 

  7. I. Campbell, D. Bourell, and I. Gibson, Rapid Prototyp. J. 18, 255 (2012).

    Article  Google Scholar 

  8. L. Li, A. Tirado, I.C. Nlebedim, O. Rios, B. Post, V. Kunc, R.R. Lowden, E. Lara-curzio, R. Fredette, J. Ormerod, T.A. Lograsso, and M.P. Paranthaman, Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  9. L. Li, B. Post, V. Kunc, A.M. Elliott, and M.P. Paranthaman, Scr. Mater. 135, 100 (2017).

    Article  Google Scholar 

  10. C. Huber, C. Abert, F. Bruckner, M. Groenefeld, O. Muthsam, S. Schuschnigg, C. Vogler, R. Windl, and D. Suess, Appl. Phys. Lett. 109, 162401 (2016).

    Article  Google Scholar 

  11. L. Li, K. Jones, B. Sales, J.L. Pries, I.C. Nlebedim, K. Jin, H. Bei, B.K. Post, M.S. Kesler, O. Rios, V. Kunc, R. Fredette, J. Ormerod, A. Williams, T.A. Lograsso, and M.P. Paranthaman, Addit. Manuf. 21, 495 (2018).

    Article  Google Scholar 

  12. B.G. Compton, J.W. Kemp, T.V. Novikov, R.C. Pack, C.I. Nlebedim, C.E. Duty, O. Rios, and M.P. Paranthaman, Mater. Manuf. Process. 33, 109 (2016).

    Article  Google Scholar 

  13. L. Li, A. Tirado, B.S. Conner, M. Chi, A.M. Elliott, O. Rios, H. Zhou, and M.P. Paranthaman, J. Magn. Magn. Mater. 438, 163 (2017).

    Article  Google Scholar 

  14. M.P. Paranthaman, C.S. Shafer, A.M. Elliott, D.H. Siddel, M.A. McGuire, R.M. Springfield, J. Martin, R. Fredette, and J. Ormerod, JOM 68, 1978 (2016).

    Article  Google Scholar 

  15. J.-M. Lamarre, F. Bernier, Int. Forum Magn. Appl. Technol. Mater. (MAGNETICS 2018), Orlando, (2018). http://magneticsconference.com/schedule/magnetic-materials-fabricated-by-cold-spray-additive-manufacturing/. Accessed 18 June 2018.

  16. J. Ormerod and S. Constantinides, J. Appl. Phys. 81, 4816 (1997).

    Article  Google Scholar 

  17. D. Brown, B.-M. Ma, and Z. Chen, J. Magn. Magn. Mater. 248, 432 (2002).

    Article  Google Scholar 

  18. B.M. Ma, J.W. Herchenroeder, B. Smith, M. Suda, D.N. Brown, and Z. Chen, J. Magn. Magn. Mater. 239, 418 (2002).

    Article  Google Scholar 

  19. J. Jacimovic, F. Binda, L.G. Herrmann, F. Greuter, J. Genta, M. Calvo, T. Tomse, and R.A. Simon, Adv. Eng. Mater. 19, 1700098 (2017).

    Article  Google Scholar 

  20. F. Meng, R.P. Chaudhary, K. Gandha, I.C. Nlebedim, A. Palasyuk, E. Simsek, M.J. Kramer, and R.T. Ott, JOM 70, 872 (2018).

    Article  Google Scholar 

  21. H. Mitarai, K. Noguchi, C. Mishima, H. Matsuoka, M. Yamazaki, and Y. Kawasugi, IEEE Trans. Magn. 50, 10 (2014).

    Article  Google Scholar 

  22. I.C. Nlebedim, H. Ucar, C.B. Hatter, R.W. McCallum, S.K. McCall, M.J. Kramer, and M.P. Paranthaman, J. Magn. Magn. Mater. 422, 168 (2017).

    Article  Google Scholar 

  23. H.A. Khazdozian, H. Ucar, C.B. Hatter, M.J. Kramer, M.P. Paranthaman, and I.C. Nlebedim, 3rd Pan American Materials Congress: Materials for Green Energy (San Diego, USA, 2017).

  24. Aichi Steel Corporation, “Magfine NdFeB Anisotropic Resin-Bonded Magnet: Magfine Technical Datasheet (2015). https://www.aichi-steel.co.jp/ENGLISH/products/electromagnetic/bonded_magnet/item/magfine_datasheet-201705.pdf. Accessed 18 June 2018.

  25. K. Gandha, L. Li, I.C. Nlebedim, B.K. Post, V. Kunc, B.C. Sales, J. Bell, and M.P. Paranthaman, J. Magn. Magn. Mater. 467, 8 (2018).

    Article  Google Scholar 

  26. H. Hembach, S.A. Evans, and D. Gerling, 2008 18th International Conference on Electrical Machines (Vilamoura, Portugal, 2008), pp. 1–5.

  27. R. Abdelmoula, N.B. Hadj, M. Chaieb, and R. Neji, J. Electr. Syst. 13, 528 (2017).

    Google Scholar 

  28. R. Islam, I. Husain, A. Fardoun, and K. McLaughlin, IEEE Trans. Ind. Appl. 45, 152 (2009).

    Article  Google Scholar 

  29. M.Z. Youssef, IEEE Trans. Ind. Electron. 62, 3277 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. Work was performed at Ames Laboratory, ORNL, and LLNL under Contracts DE-AC02-07CH11358, DE-AC05-00OR22725, and DE-AC52-07NA27344, respectively. The authors would like to thank James Bell for providing the magnetic material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena A. Khazdozian.

Ethics declarations

Conflict of interest

All the authors have no competing financial interests.

Additional information

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material (PDF 527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazdozian, H.A., Li, L., Paranthaman, M.P. et al. Low-Field Alignment of Anisotropic Bonded Magnets for Additive Manufacturing of Permanent Magnet Motors. JOM 71, 626–632 (2019). https://doi.org/10.1007/s11837-018-3242-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3242-0

Navigation