Advertisement

JOM

, Volume 71, Issue 2, pp 559–566 | Cite as

Structure and Magnetic Properties of Heat-Resistant Sm(Co0.796−xFe0.177CuxZr0.027)6.63 Permanent Magnets with High Coercivity

  • A. G. Popov
  • V. S. Gaviko
  • V. V. PopovJr.
  • O. A. GolovniaEmail author
  • A. V. Protasov
  • E. G. Gerasimov
  • A. V. Ogurtsov
  • M. K. Sharin
  • R. Gopalan
Advanced Nanocomposite Materials: Structure-Property Relationships
  • 134 Downloads

Abstract

The structure and temperature stability of high-temperature permanent magnets Sm(Co0.796−xFe0.177CuxZr0.027)6.63 (x = 0.117 and 0.130) were studied using x-ray diffraction analysis, thermomagnetic analysis, and scanning and transmission electron microscopy. The magnets have a nanocrystalline cellular structure composed of the R2:17 cell phase, 1:5 boundary phase (27–28% by volume), and Z-phase platelets. The 1:5 phase is formed in the course of isothermal annealing at 850°C and exists in the entire temperature range from 850°C to 400°C. The Curie temperature of the R2:17 and 1:5 phases is approximately 815°C and 580°C, respectively. The magnets have the following hysteresis properties at room temperature: Br = 890–920 mT, JHc = 2.4–2.6 MA/m, BHc = 629–676 kA/m, and (BH)m = 143–159 kJ/m3. In the temperature range of 20–500°C, the temperature coefficients of Br and JHc of the magnets (x = 0.117 and 0.130) do not exceed |− 0.070| and |− 0.172|%/°C, respectively.

Notes

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Grant No. 17-52-80072) and DST-BRICS and the state assignment of FASO of Russia (topic “Magnet” no. AAAA-A18-118020290129-5). The x-ray diffraction investigation and magnetic measurements were performed at the Center of Collaborative Access of IMP UB RAS. The funding was provided by Department of Science and Technology, Ministry of Science and Technology (Grant No. 258).

References

  1. 1.
    L. Rabenberg, R.K. Mishra, and G. Thomas, J. Appl. Phys. 53, 2389 (1982).CrossRefGoogle Scholar
  2. 2.
    J. Fidler and P. Skalicky, J. Magn. Magn. Mater. 27, 127 (1982).CrossRefGoogle Scholar
  3. 3.
    Y.I. Teytel, A.G. Popov, V.G. Maykov, L.M. Magat, N.N. Shchegoleva, and Y.S. Shur, Fiz. Met. I Metalloved. 55, 349 (1983).Google Scholar
  4. 4.
    R.K. Mishra, G. Thomas, T. Yoneyama, A. Fukuno, and T. Ojima, J. Appl. Phys. 52, 2517 (1981).CrossRefGoogle Scholar
  5. 5.
    R.M.W. Strnat, S. Liu, and K.J. Strnat, J. Appl. Phys. 53, 2380 (1982).CrossRefGoogle Scholar
  6. 6.
    S. Liu, H.F. Mildrum, and K.J. Strnat, J. Appl. Phys. 53, 2383 (1982).CrossRefGoogle Scholar
  7. 7.
    A.G. Popov, A.V. Korolev, and N.N. Shchegoleva, Phys. Met. Metallogr. 69, 100 (1990).Google Scholar
  8. 8.
    J.F. Liu, T. Chui, D. Dimitrov, and G.C. Hadjipanayis, Appl. Phys. Lett. 73, 3007 (1998).CrossRefGoogle Scholar
  9. 9.
    C.H. Chen, M.S. Walmer, M.H. Walmer, S. Liu, E. Kuhl, and G. Simon, J. Appl. Phys. 83, 6706 (1998).CrossRefGoogle Scholar
  10. 10.
    J.F. Liu, Y. Ding, Y. Zhang, D. Dimitar, F. Zhang, and G.C. Hadjipanayis, J. Appl. Phys. 85, 5660 (1999).CrossRefGoogle Scholar
  11. 11.
    C.H. Chen, M.S. Walmer, M.H. Walmer, J. Liu, S. Liu, and G.E. Kuh, J. Appl. Phys. 87, 6719 (2000).CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, M. Corte-Real, G.C. Hadjipanayis, J. Liu, M.S. Walmer, and K.M. Krishnan, J. Appl. Phys. 87, 6722 (2000).CrossRefGoogle Scholar
  13. 13.
    G.C. Hadjipanayis, W. Tang, Y. Zhang, S.T. Chui, J.F. Liu, C. Chen, and H. Kronmuller, IEEE Trans. Magn. 36, 3382 (2000).CrossRefGoogle Scholar
  14. 14.
    W. Tang, A.M. Gabay, Y. Zhang, G.C. Hadjipanayis, and H. Kronmuller, IEEE Trans. Magn. 37, 2515 (2001).CrossRefGoogle Scholar
  15. 15.
    W. Tang, Y. Zhang, A.M. Gabay, and G.C. Hadjipanayis, J. Magn. Magn. Mater. 242, 1335 (2002).CrossRefGoogle Scholar
  16. 16.
    J.F. Liu and M.S. Walmer, 18th International Workshop on High Performance Magnets and their Applications, eds. P. de Rango and N.M. Dempsey (Annecy, France, 2004), pp. 630–636.Google Scholar
  17. 17.
    D. Goll, H. Kronmüller, and H.H. Stadelmaier, J. Appl. Phys. 96, 6534 (2004).CrossRefGoogle Scholar
  18. 18.
    G. Wang and C. Jiang, J. Appl. Phys. 112, 33909 (2012).CrossRefGoogle Scholar
  19. 19.
    G. Wang, L. Zheng, and C. Jiang, J. Magn. Magn. Mater. 343, 173 (2013).CrossRefGoogle Scholar
  20. 20.
    H. Sepehri-Amin, J. Thielsch, J. Fischbacher, T. Ohkubo, T. Schrefl, O. Gutfleisch, and K. Hono, Acta Mater. 126, 1 (2017).CrossRefGoogle Scholar
  21. 21.
    H. Kronmüller and D. Goll, Scr. Mater. 47, 545 (2002).CrossRefGoogle Scholar
  22. 22.
    R. Gopalan, T. Ohkubo, and K. Hono, Scr. Mater. 54, 1345 (2006).CrossRefGoogle Scholar
  23. 23.
    D. Goll, H.H. Stadelmaier, and H. Kronmüller, Scr. Mater. 63, 243 (2010).CrossRefGoogle Scholar
  24. 24.
    H.H. Stadelmaier, H. Kronmüller, and D. Goll, Scr. Mater. 63, 843 (2010).CrossRefGoogle Scholar
  25. 25.
    K. Song, W. Sun, H. Chen, N. Yu, Y. Fang, M. Zhu, and W. Li, AIP Adv. 7, 056238 (2017).CrossRefGoogle Scholar
  26. 26.
    M. Palit, D.M. Rajkumar, S. Pandian, and S.V. Kamat, Mater. Chem. Phys. 179, 214 (2016).CrossRefGoogle Scholar
  27. 27.
    H. Machida, T. Fujiwara, R. Kamada, Y. Morimoto, and M. Takezawa, AIP Adv. 7, 056223 (2017).CrossRefGoogle Scholar
  28. 28.
    A.G. Popov, O.A. Golovnia, A.V. Protasov, V.S. Gaviko, R. Gopalan, C. Jiang, and T. Zhang, IEEE Trans. Magn. 54, 2100907 (2018).CrossRefGoogle Scholar
  29. 29.
    S. Bance, J. Fischbacher, A. Kovacs, H. Oezelt, F. Reichel, and T. Schrefl, JOM 67, 1350 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • A. G. Popov
    • 1
    • 2
  • V. S. Gaviko
    • 1
    • 2
  • V. V. PopovJr.
    • 3
  • O. A. Golovnia
    • 1
    • 2
    Email author
  • A. V. Protasov
    • 1
    • 2
  • E. G. Gerasimov
    • 1
    • 2
  • A. V. Ogurtsov
    • 4
  • M. K. Sharin
    • 4
  • R. Gopalan
    • 5
  1. 1.M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of SciencesEkaterinburgRussia
  2. 2.Institute of Natural Sciences and MathematicsUral Federal UniversityEkaterinburgRussia
  3. 3.Israel Institute of MetalsTechnion R&D FoundationTechnion City, HaifaIsrael
  4. 4.LLC “POZ-Progress”V. PyshmaRussia
  5. 5.International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)ChennaiIndia

Personalised recommendations