Advertisement

JOM

, Volume 71, Issue 2, pp 531–540 | Cite as

Enhancement of Rheological and Mechanical Properties of Bitumen by Polythiophene Doped with Nano Fe3O4

  • Seyyed Mojtaba Mousavi
  • Seyyed Alireza Hashemi
  • Aziz Babapoor
  • Bijan MediEmail author
Advanced Nanocomposite Materials: Structure-Property Relationships
  • 100 Downloads

Abstract

Bitumen has remarkable chemical and mechanical properties as a construction and insulating material. In this research, bitumen reinforced with polythiophene, which is doped with Fe3O4 nanoparticles, was produced by the vacuum shock technique. Samples were prepared at various filler loadings to investigate their rheological and mechanical properties. Characteristics of the samples were evaluated using a dynamic shear rheometer and various empirical rheological tests including the softening point, penetration, and reversibility. The results indicated that the synthesized nanoparticles have good compatibility and interaction with the molten phase of bitumen. On the other hand, modification of bitumen has led to significant improvement in the compound shear modulus and resistance against deformation, while it has hindered fatigue damage and improved the softening point, penetration, and reversibility.

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11837_2018_3215_MOESM1_ESM.pdf (296 kb)
Supplementary material 1 (PDF 296 kb)

References

  1. 1.
    S.G. Jahromi and A. Khodaii, Constr. Build. Mater. 23, 2894 (2009).CrossRefGoogle Scholar
  2. 2.
    J. Read and D. Whiteoak, The Shell Bitumen Handbook, 5th ed. (London: Thomas Telford, 2003), p. 231.Google Scholar
  3. 3.
    T.J. Pinnavaia and G.W. Beall, Polymer-Clay Nanocomposites (Chichester: John Wiley, 2000), p. 21.Google Scholar
  4. 4.
    A. Kebritchi, A. Jalali-Arani, and A.A. Roghanizad, Constr. Build. Mater. 25, 2875 (2011).CrossRefGoogle Scholar
  5. 5.
    M.R. Karim, C.J. Lee, and M.S. Lee, J. Polym. Sci., Part A: Polym. Chem. 44, 5283 (2006).CrossRefGoogle Scholar
  6. 6.
    J.L. Goodrich, J.E. Goodrich, and W.J. Kari, Asphalt Composition Tests: Their Application and Relation to Field Performance, Transportation Research Record 1096 (Washington, DC: TRB, National Research Council, 1986) pp. 146–167.Google Scholar
  7. 7.
    E.J. Van Assen and M. Van de Ven, Review of South African Bitumen Specification to Take Cognisance of Compositional Balance Relative to Long-Term Behaviour (Chennai: Department of Transport, 1996).Google Scholar
  8. 8.
    S. Dessouky, C. Reyes, M. Ilias, D. Contreras, and A. Papagiannakis, Constr. Build. Mater. 25, 2785 (2011).CrossRefGoogle Scholar
  9. 9.
    M. Garcia-Morales, P. Partal, F. Navarro, and C. Gallegos, Fuel 85, 936 (2006).CrossRefGoogle Scholar
  10. 10.
    J.G. Speight, The Chemistry and Technology of Petroleum, 5th ed. (Boca Raton: CRC Press, 2014), pp. 187–240.Google Scholar
  11. 11.
    S.S. Galooyak, B. Dabir, A.E. Nazarbeygi, and A. Moeini, Constr. Build. Mater. 24, 300 (2010).CrossRefGoogle Scholar
  12. 12.
    N. Baldino, D. Gabriele, F.R. Lupi, C.O. Rossi, P. Caputo, and T. Falvo, Constr. Build. Mater. 40, 397 (2013).CrossRefGoogle Scholar
  13. 13.
    G. Martinez-Arguelles, F. Giustozzi, M. Crispino, and G.W. Flintsch, Constr. Build. Mater. 72, 423 (2014).CrossRefGoogle Scholar
  14. 14.
    C. Wang, P. Wang, Y. Li, and Y. Zhao, Constr. Build. Mater. 80, 195 (2015).CrossRefGoogle Scholar
  15. 15.
    E. Garilli, F. Autelitano, C. Godenzoni, A. Graziani, and F. Giuliani, Constr. Build. Mater. 125, 352 (2016).CrossRefGoogle Scholar
  16. 16.
    L.G.A. Farias, J.L. Leitinho, B.D.C. Amoni, J.B. Bastos, J.B. Soares, S.D.A. Soares, and H.B. de Sant’Ana, Constr. Build. Mater. 125, 873 (2016).CrossRefGoogle Scholar
  17. 17.
    D. Zhang, H. Zhang, C. Zhu, and C. Shi, Constr. Build. Mater. 144, 423 (2017).CrossRefGoogle Scholar
  18. 18.
    C. Zhu, H. Zhang, C. Shi, and S. Li, Constr. Build. Mater. 146, 30 (2017).CrossRefGoogle Scholar
  19. 19.
    A.K. Das and M. Panda, Constr. Build. Mater. 149, 724 (2017).CrossRefGoogle Scholar
  20. 20.
    O. Xu, P.R. Rangaraju, S. Wang, and F. Xiao, Constr. Build. Mater. 154, 841 (2017).CrossRefGoogle Scholar
  21. 21.
    S.M. Mousavi, M. Farsi, and M. Azizi, J. Appl. Polym. Sci. 132, 1 (2015).CrossRefGoogle Scholar
  22. 22.
    S. Wu, J. Han, L. Pang, M. Yu, and T. Wang, Constr. Build. Mater. 33, 133 (2012).CrossRefGoogle Scholar
  23. 23.
    Z. Feng, J. Yu, and S. Wu, Constr. Build. Mater. 29, 591 (2012).CrossRefGoogle Scholar
  24. 24.
    H. Wu, L. Li, J. Yu, S. Xu, and D. Xie, Constr. Build. Mater. 111, 565 (2016).CrossRefGoogle Scholar
  25. 25.
    J. Li, J. Yu, S. Wu, L. Pang, S. Amirkhanian, and M. Zhao, Constr. Build. Mater. 152, 832 (2017).CrossRefGoogle Scholar
  26. 26.
    M.N. Siddiqui, M. Mansha, U. Mehmood, N. Ullah, A.F. Al-Betar, and A.A. Al-Saadi, Dyes Pigm. 141, 406 (2017).CrossRefGoogle Scholar
  27. 27.
    I. Osaka, G. Sauve, R. Zhang, T. Kowalewski, and R.D. McCullough, Adv. Mater. 19, 4160 (2007).CrossRefGoogle Scholar
  28. 28.
    M.L. Braunger, A. Barros, M. Ferreira, and C.A. Olivati, Electrochim. Acta 165, 1 (2015).CrossRefGoogle Scholar
  29. 29.
    P. Sivaraman, S.P. Mishra, A.R. Bhattacharrya, A. Thakur, K. Shashidhara, and A.B. Samui, Electrochim. Acta 69, 134 (2012).CrossRefGoogle Scholar
  30. 30.
    C. Zhang, H. Zhang, B. Du, R. Hou, and S. Guo, J. Colloid Interface Sci. 368, 97 (2012).CrossRefGoogle Scholar
  31. 31.
    A. Gök, M. Omastová, and A.G. Yavuz, Synth. Met. 157, 23 (2007).CrossRefGoogle Scholar
  32. 32.
    R. Elsenbaumer, K. Jen, G. Miller, and L. Shacklette, Synth. Met. 18, 277 (1987).CrossRefGoogle Scholar
  33. 33.
    M.R. Chandra, P.S.P. Reddy, T.S. Rao, S. Pammi, K.S. Kumar, K.V. Babu, C.K. Kumar, and K. Hemalatha, J. Phys. Chem. Solids 105, 99 (2017).CrossRefGoogle Scholar
  34. 34.
    D.E. Motaung, G.F. Malgas, C.J. Arendse, S.E. Mavundla, C.J. Oliphant, and D. Knoesen, Sol. Energy Mater. Sol. Cells 93, 1674 (2009).CrossRefGoogle Scholar
  35. 35.
    R.D. McCullough, Adv. Mater. 10, 93 (1998).CrossRefGoogle Scholar
  36. 36.
    J.J. Tindale, H. Holm, M.S. Workentin, and O.A. Semenikhin, J. Electroanal. Chem. 612, 219 (2008).CrossRefGoogle Scholar
  37. 37.
    A. Abd-El-Aziz, S. Dalgakiran, I. Kucukkaya, and B. Wagner, Electrochim. Acta 89, 445 (2013).CrossRefGoogle Scholar
  38. 38.
    F.M. Winnik, Chem. Rev. 93, 587 (1993).CrossRefGoogle Scholar
  39. 39.
    E. González-Juárez, M. Güizado-Rodríguez, V. Barba, M. Melgoza-Ramírez, M. Rodríguez, G. Ramos-Ortíz, and J. Maldonado, J. Mol. Struct. 1103, 25 (2016).CrossRefGoogle Scholar
  40. 40.
    S.A. Hashemi and S.M. Mousavi, Compos. A 90, 457 (2016).CrossRefGoogle Scholar
  41. 41.
    S.A. Hashemi, S.M. Mousavi, M. Arjmand, N. Yan, and U. Sundararaj, Polym. Compos. 39, E1139 (2018).CrossRefGoogle Scholar
  42. 42.
    S.A. Hashemi, S.M. Mousavi, R. Faghihi, M. Arjmand, S. Sina, and A.M. Amani, Radiat. Phys. Chem. 146, 77 (2018).CrossRefGoogle Scholar
  43. 43.
    S.M. Mousavi, S.A. Hashemi, M. Arjmand, A.M. Amani, F. Sharif, and S. Jahandideh, ChemistrySelect 3, 7200 (2018).CrossRefGoogle Scholar
  44. 44.
    A. Subhy, Constr. Build. Mater. 156, 28 (2017).CrossRefGoogle Scholar
  45. 45.
    X. Lu and U. Isacsson, Constr. Build. Mater. 11, 23 (1997).CrossRefGoogle Scholar
  46. 46.
    D.A. Anderson, D.W. Christensen, H.U. Bahia, R. Dongre, M. Sharma, C.E. Antle, and J. Button, Strategic Highway Research Program, National Research Council. Report No. SHRP-A-369 (1994).Google Scholar
  47. 47.
    G. Airey, Rheological characteristics of polymer modified and aged bitumens. Dissertation, University of Nottingham (1997).Google Scholar
  48. 48.
    S. Shen, G.D. Airey, S.H. Carpenter, and H. Huang, Road Mater. Pavement Des. 7, 47 (2006).CrossRefGoogle Scholar
  49. 49.
    W. Van Dijk and W. Visser, Energy approach to fatigue for pavement design, in Proceedings of the Association of Asphalt Paving Technologists Proceedings (1977), pp. 1–40.Google Scholar
  50. 50.
    K. Ghuzlan and S. Carpenter, Transp. Res. Rec. 1, 141 (2000).CrossRefGoogle Scholar
  51. 51.
    M.W. Barsoum, T. Zhen, S.R. Kalidindi, M. Radovic, and A. Murugaiah, Nat. Mater. 2, 107 (2003).CrossRefGoogle Scholar
  52. 52.
    Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, and X. Deng, Procedia Eng. 27, 632 (2012).CrossRefGoogle Scholar
  53. 53.
    F. Entezari Juybari, A. Kamran-Pirzaman, and M. Ghorbani, Inorg. Nano Met. Chem. 47, 121 (2017).CrossRefGoogle Scholar
  54. 54.
    S.N.A. Baharin, N. Muhamad Sarih, and S. Mohamad, Polymers 8, 117 (2016).CrossRefGoogle Scholar
  55. 55.
    R. Liu and Z. Liu, Chin. Sci. Bull. 54, 2028 (2009).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of Mohaghegh ArdabiliArdabilIran
  2. 2.Department of Chemical EngineeringHamedan University of TechnologyHamedanIran

Personalised recommendations