Skip to main content
Log in

Cytotoxicity of Bacteriostatic Reduced Graphene Oxide-Based Copper Oxide Nanocomposites

  • Materials in Nanomedicine and Bioengineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

An antibacterial nanocomposite, reduced graphene oxide-based copper oxide (CuO-RGO), was prepared by a one-step hydrothermal method and characterized by x-ray diffraction analysis, infrared absorption spectroscopy, scanning electron microscopy, transmission electron microscopy, and photoluminescence measurements, revealing CuO nanoparticles with diameter of about 26 nm uniformly anchored on graphene sheets. Compared with recently reported bacteriostatic agents, much less CuO-RGO is required and better bacteriostatic effect is achieved, with good stability. The minimum inhibitory concentration of the CuO-RGO composite against Escherichia coli reached 240 μg mL−1. The antibacterial rate remained at 89% after five cycles. In addition, introduction of graphene inhibited leaching of Cu2+, which reduces the cytotoxicity of CuO-RGO to mouse fibroblast L929.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Das, B.C. Nath, P. Phukon, and S.K. Dolui, Colloids Surf. B 101, 430 (2013).

    Article  Google Scholar 

  2. M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. de Aberasturi, I.R. de Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, and M. Mahmoudi, Trends Biotechnol. 30, 499 (2012).

    Article  Google Scholar 

  3. H.A. Jeng and J. Swanson, J. Environ. Sci. Health Part A Toxic Hazard. Subst. Environ. Eng. 41, 2699 (2006).

    Article  Google Scholar 

  4. S. Kim, J.E. Choi, J. Choi, K.H. Chung, K. Park, J. Yi, and D.Y. Ryu, Toxicol. In Vitro 23, 1076 (2009).

    Article  Google Scholar 

  5. T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, and A.E. Nel, ACS Nano 2, 2121 (2008).

    Article  Google Scholar 

  6. H. Zhang, Z. Ji, T. Xia, H. Meng, C. Lowkam, R. Liu, S. Pokhrel, S. Lin, X. Wang, and Y.P. Liao, ACS Nano 6, 4349 (2012).

    Article  Google Scholar 

  7. R. Bhattacharya and P. Mukherjee, Adv. Drug Deliv. Rev. 60, 1289 (2008).

    Article  Google Scholar 

  8. Y.W. Baek and Y.J. An, Sci. Total Environ. 409, 1603 (2011).

    Article  Google Scholar 

  9. M. Pandurangan and D.H. Kim, J. Nanopart. Res. 17, 1 (2015).

    Article  Google Scholar 

  10. L.C. Wehmas, C. Anders, J. Chess, A. Punnoose, C.B. Pereira, J.A. Greenwood, and R.L. Tanguay, Toxicol. Rep. 2, 702 (2015).

    Article  Google Scholar 

  11. T. Xu, H. Lei, S.Z. Cai, X.P. Xia, and C.S. Xie, Contraception 70, 153 (2004).

    Article  Google Scholar 

  12. H.L. Karlsson, P. Cronholm, J. Gustafsson, and L. Möller, Chem. Res. Toxicol. 21, 1726 (2008).

    Article  Google Scholar 

  13. Y. Zhang, Y. Xu, X. Xi, S. Shrestha, P. Jiang, W. Zhang, and C. Gao, J. Mater. Chem. B. 5, 3521 (2017).

    Article  Google Scholar 

  14. T. Jan, J. Iqbal, Q. Mansoor, M. Ismail, M.S.H. Naqvi, A. Gul, S.F.U.H. Naqvi, and F. Abbas, J. Phys. D Appl. Phys. 47, 355301 (2014).

    Article  Google Scholar 

  15. H. Naatz, S. Lin, R. Li, W. Jiang, Z. Ji, C.H. Chang, J. Koser, J. Thoming, T. Xia, A.E. Nel, L. Madler, and S. Pokhrel, ACS Nano 11, 501 (2017).

    Article  Google Scholar 

  16. A. Regiel, S. Irusta, A. Kyziol, M. Arruebo, and J. Santamaria, Nanotechnology 24, 015101 (2013).

    Article  Google Scholar 

  17. S. Agnihotri, S. Mukherji, and S. Mukherji, Nanoscale 5, 7328 (2013).

    Article  Google Scholar 

  18. R. Kumar, R.K. Singh, D.P. Singh, E. Joanni, R.M. Yadav, and S.A. Moshkalev, Coord. Chem. Rev. 342, 34 (2017).

    Article  Google Scholar 

  19. C. Dong, J. Lu, B. Qiu, B. Shen, M. Xing, and J. Zhang, Appl. Catal. B 222, 146 (2018).

    Article  Google Scholar 

  20. S. Sohrabnezhad, M.J. Mehdipour Moghaddam, and T. Salavatiyan, Spectrochim. Acta Part A 125, 73 (2014).

    Article  Google Scholar 

  21. X. Zhang, W. Wang, Y. Zhang, T. Zeng, C. Jia, and L. Chang, Colloids Surf. B 161, 433 (2017).

    Article  Google Scholar 

  22. G. He, H. Wu, K. Ma, L. Wang, X. Sun, H. Chen, and X. Wang, Synth. React. Inorg. Metal Org. Nano Metal Chem. 43, 440 (2013).

    Article  Google Scholar 

  23. G. He, J. Li, H. Chen, J. Shi, X. Sun, S. Chen, and X. Wang, Mater. Lett. 82, 61 (2012).

    Article  Google Scholar 

  24. R. Xu, H. Bi, G. He, J. Zhu, and H. Chen, Mater. Res. Bull. 57, 190 (2014).

    Article  Google Scholar 

  25. S.T. Yang, Y. Chang, H. Wang, G. Liu, S. Chen, Y. Wang, Y. Liu, and A. Cao, J. Colloid Interface Sci. 351, 122 (2010).

    Article  Google Scholar 

  26. C.H. Deng, J.L. Gong, G.M. Zeng, P. Zhang, B. Song, X.G. Zhang, H.Y. Liu, and S.Y. Huan, Chemosphere 184, 347 (2017).

    Article  Google Scholar 

  27. H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace, and D. Li, Adv. Mater. 20, 3557 (2008).

    Article  Google Scholar 

  28. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  Google Scholar 

  29. G.Y. He, W. Dai, Y.T. Zhao, Q. Chen, X.Q. Sun, H.Q. Chen, and X. Wang, Mon. Chem. 145, 3 (2014).

    Article  Google Scholar 

  30. W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  Google Scholar 

  31. T. Mosmann, J. Immunol. Methods 65, 55 (1983).

    Article  Google Scholar 

  32. A. Liu, Y. Bai, Y. Liu, M. Zhao, J. Mu, C. Wu, X. Zhang, G. Wang, and H. Che, Mater. Res. Bull. 84, 85 (2016).

    Article  Google Scholar 

  33. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 3906 (2010).

    Article  Google Scholar 

  34. W. Zhang, Q. Yao, X. Wu, Y. Fu, K. Deng, and X. Wang, Electrochim. Acta 200, 131 (2016).

    Article  Google Scholar 

  35. Y. Fu, H. Chen, X. Sun, and X. Wang, App. Catal. B 111–112, 280 (2012).

    Article  Google Scholar 

  36. G. He, L. Wang, H. Chen, X. Sun, and X. Wang, Mater. Lett. 98, 164 (2013).

    Article  Google Scholar 

  37. Q. Qiu, Y. Chen, J. Xue, J. Zhu, Y. Fu, G. He, and H. Chen, Ceram. Int. 43, 2226 (2017).

    Article  Google Scholar 

  38. S. Sonia, N.D. Jayram, P.S. Kumar, D. Mangalaraj, N. Ponpandian, and C. Viswanathan, Superlattices Microstruct. 66, 1 (2014).

    Article  Google Scholar 

  39. G. Zou, H. Li, D. Zhang, K. Xiong, C. Dong, and Y. Qian, J. Phys. Chem. B. 110, 1632 (2006).

    Article  Google Scholar 

  40. R. Jana, A. Dey, M. Das, J. Datta, P. Das, and P.P. Ray, Appl. Surf. Sci. 452, 155 (2018).

    Article  Google Scholar 

  41. H. Sun, X. Song, M. Xu, Y. Zhang, W. Que, and S. Yang, New J. Chem. 39, 4278 (2015).

    Article  Google Scholar 

  42. M. Ahmad, E. Ahmed, Z.L. Hong, J.F. Xu, N.R. Khalid, A. Elhissi, and W. Ahmed, Appl. Surf. Sci. 274, 273 (2013).

    Article  Google Scholar 

  43. L. Cheng, Y. Wang, D. Huang, T. Nguyen, Y. Jiang, H. Yu, N. Ding, G. Ding, and J. Zheng, Mater. Res. Bull. 61, 409 (2015).

    Article  Google Scholar 

  44. H. Meng, Z. Chen, G. Xing, H. Yuan, C. Chen, F. Zhao, C. Zhang, and Y. Zhao, Toxicol. Lett. 175, 102 (2007).

    Article  Google Scholar 

  45. D. Laha, A. Pramanik, A. Laskar, M. Jana, P. Pramanik, and P. Karmakar, Mater. Res. Bull. 59, 185 (2014).

    Article  Google Scholar 

  46. Y. Si and E.T. Samulski, Nano Lett. 8, 1679 (2008).

    Article  Google Scholar 

  47. Y. Liu, D. Yu, C. Zeng, Z. Miao, and L. Dai, Langmuir 26, 6158 (2010).

    Article  Google Scholar 

  48. W.L. Du, S.S. Niu, Y.L. Xu, Z.R. Xu, and C.L. Fan, Carbohydr. Polym. 75, 385 (2009).

    Article  Google Scholar 

  49. M. Hadidi, A. Bigham, E. Saebnoori, S.A. Hassanzadeh-Tabrizi, S. Rahmati, Z.M. Alizadeh, V. Nasirian, and M. Rafienia, Surf. Coat. Technol. 321, 171 (2017).

    Article  Google Scholar 

  50. Y. Ouyang, X. Cai, Q. Shi, L. Liu, D. Wan, S. Tan, and Y. Ouyang, Colloids Surf. B 107, 107 (2013).

    Article  Google Scholar 

  51. J.H.B. Nunes, R.E.F. de Paiva, A. Cuin, A.M. da Costa Ferreira, W.R. Lustri, and P.P. Corbi, J. Mol. Struct. 1112, 14 (2016).

    Article  Google Scholar 

  52. L. Zhang, Y. Jiang, Y. Ding, N. Daskalakis, L. Jeuken, M. Povey, A.J. O’Neill, and D.W. York, J. Nanopart. Res. 12, 1625 (2010).

    Article  Google Scholar 

  53. A. Katsumiti, A.J. Thorley, I. Arostegui, P. Reip, E. Valsami-Jones, T.D. Tetley, and M.P. Cajaraville, Toxicol. In Vitro 48, 146 (2018).

    Article  Google Scholar 

  54. M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier, and A. Kahru, Chemosphere 71, 1308 (2008).

    Article  Google Scholar 

  55. S. Pourbeyram, R. Bayrami, and H. Dadkhah, Colloids Surf. A 529, 73 (2017).

    Article  Google Scholar 

  56. R.J. Griffitt, R. Weil, K.A. Hyndman, N.D. Denslow, K. Powers, D. Taylor, and D.S. Barber, Environ. Sci. Technol. 41, 8178 (2007).

    Article  Google Scholar 

  57. A. Nel, T. Xia, L. Madler, and N. Li, Science 311, 622 (2006).

    Article  Google Scholar 

  58. A. Yamamoto, R. Honma, M. Sumita, and T. Hanawa, J. Biomed. Mater. Res. Part A 68, 244 (2004).

    Article  Google Scholar 

  59. D. Olteanu, A. Filip, C. Socaci, A.R. Biris, X. Filip, M. Coros, M.C. Rosu, F. Pogacean, C. Alb, I. Baldea, P. Bolfa, and S. Pruneanu, Colloids Surf. B 136, 791 (2015).

    Article  Google Scholar 

  60. Y. Chang, S.-T. Yang, J.-H. Liu, E. Dong, Y. Wang, A. Cao, Y. Liu, and H. Wang, Toxicol. Lett. 200, 201 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Nature Science Foundation of China (Nos. 51572036, 51472035), Science and Technology Department of Jiangsu Province (BY2015027-18, BY2016029-12), Changzhou Key Laboratory of Graphene-Based Materials for Environment and Safety (CE20160001-2, CM20153006), and PAPD of Jiangsu Higher Education Institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqun Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Shen, J., Qin, J. et al. Cytotoxicity of Bacteriostatic Reduced Graphene Oxide-Based Copper Oxide Nanocomposites. JOM 71, 294–301 (2019). https://doi.org/10.1007/s11837-018-3197-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3197-1

Navigation