Skip to main content
Log in

CFD Simulations of Gas–Liquid Multiscale Flow Characteristics in an Aluminum Electrolysis Cell with Population Balance Model: Effect of Anode Slot Configuration

  • CFD Modeling and Simulation in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Numerical simulations of the effects of different anode slot configurations on the gas–liquid multiscale flow characteristics in an aluminum electrolysis cell have been conducted based on a recently developed mathematical model. The results clearly showed that use of anode slots can significantly promote the bubble evacuation behavior and thus affect the overall flow pattern. Both the gas volume fraction and bubble size decreased obviously when transversal or especially longitudinal slots were used. Moreover, the greater the number of both kinds of slot, the lower the mentioned parameters. With increasing anode slot width, the gas volume fraction decreased slightly while there was almost no effect on the bubble size distribution (BSD). Reducing the anode slot height caused a higher gas volume fraction. Both the overall gas volume fraction and BSD in industrial-scale cells are apparently influenced by two large circulation vortices caused by electromagnetic forces (EMFs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.E. Einarsrud, I. Eick, W. Bai, Y.Q. Feng, J.S. Hua, and P.J. Witt, Appl. Math. Model. 44, 3 (2017).

    Article  MathSciNet  Google Scholar 

  2. B.J. Moxnes, B.E. Aga, and H. Skaar, Light Metals 1998, ed. H. Kvande (San Francisco, : TMS, 1998), pp. 247–255.

    Google Scholar 

  3. X.W. Wang, Light Metals 2007, ed. M. Sørlie (Orlando: TMS, 2007), pp. 539–544.

    Google Scholar 

  4. K.A. Rye, E. Myrvold, and I. Solberg, Light Metals 2007, ed. M. Sørlie (Orlando: TMS, 1998), pp. 293–298.

    Google Scholar 

  5. K. Vekony and L.I. Kiss, Metall. Mater. Trans. B 41, 1006 (2010).

    Article  Google Scholar 

  6. M.A. Cooksey and W. Yang, Light Metals 2006, ed. T.J. Galloway (San Antonio: TMS, 2006), pp. 359–365.

    Google Scholar 

  7. Y.Q. Xue, N.J. Zhou, and S.Z. Bao, Chin. J. Nonferrous Metals 16, 1823 (2006).

    Google Scholar 

  8. M. Alam, W. Yang, K. Mohanarangam, G. Brooks, and Y.S. Morsi, Metall. Mater. Trans. B 44, 1155 (2013).

    Article  Google Scholar 

  9. R.G. Aaberg, V. Ranum, and K. Williamson, Light Metals 1997, ed. R. Huglen (Orlando: TMS, 1997), pp. 341–346.

    Google Scholar 

  10. Z.B. Zhao, Z.W. Wang, B.L. Gao, Y.Q. Feng, Z.N. Shi, and X.W. Hu, Metall. Mater. Trans. B 47, 1962 (2016).

    Article  Google Scholar 

  11. Y.Q. Feng, M.A. Cooksey, and M.P. Schwarz, Light Metals 2007, ed. M. Sørlie (Orlando: TMS, 2007), pp. 339–344.

    Google Scholar 

  12. J. Li, Y.J. Xu, H.L. Zhang, and Y.Q. Lai, Int. J. Multiph. Flow 37, 46 (2011).

    Article  Google Scholar 

  13. Y.Q. Feng, M.P. Schwarz, W. Yang, and M.A. Cooksey, Metall. Mater. Trans. B 46, 1959 (2015).

    Article  Google Scholar 

  14. Q. Wang, B.K. Li, and N.X. Feng, Metall. Mater. Trans. B 45, 272 (2014).

    Article  Google Scholar 

  15. S.Q. Zhan, Z.T. Wang, J.H. Yang, R.J. Zhao, C.F. Li, J.F. Wang, and J.M. Zhou, Ind. Eng. Chem. Res. 56, 8649 (2017).

    Article  Google Scholar 

  16. W. Yang and M.A. Cooksey, Light Metals 2007, ed. M. Sørlie (Orlando: TMS, 2007), pp. 451–456.

    Google Scholar 

  17. D.S. Severo, V. Gusberti, E.C.V. Pinto, and R.R. Moura, Light Metals, ed. M. Sørlie (Orlando: TMS, 2007), pp. 287–292.

    Google Scholar 

  18. S. Yang, H.L. Zhang, Y.J. Xu, H.H. Zhang, Z. Zou, J. Li, and Y.Q. Lai, J. Cent. South Univ. Technol. (Chinese) 43, 4617 (2012).

    Google Scholar 

  19. S.Q. Zhan, M. Li, J.M. Zhou, J.H. Yang, and Y.W. Zhou, J. Cent. South Univ. Technol. 22, 2482 (2015).

    Article  Google Scholar 

  20. S.Q. Zhan, J.H. Yang, Z.T. Wang, R.J. Zhao, J. Zheng, and J.F. Wang, JOM 69, 1589 (2017).

    Article  Google Scholar 

  21. S.Q. Zhan, J.F. Wang, Z.T. Wang, and J.H. Yang, JOM 70, 229 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (51704126), Natural Science Foundation of Jiangsu Province (BK20170551, BK20171301), Natural Science Foundation of Higher Education Institutions of Jiangsu Province (17KJB450001), Foundation of Senior Talent of Jiangsu University (2015JDG158), and “Qing Lan” Project Foundation of Jiangsu Province. Our special thanks are due to the anonymous reviewers for insightful suggestions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, S., Huang, Y., Wang, Z. et al. CFD Simulations of Gas–Liquid Multiscale Flow Characteristics in an Aluminum Electrolysis Cell with Population Balance Model: Effect of Anode Slot Configuration. JOM 71, 23–33 (2019). https://doi.org/10.1007/s11837-018-3191-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3191-7

Navigation