Skip to main content
Log in

Mathematical Modeling of Initial Solidification and Slag Infiltration at the Meniscus of Slab Continuous Casting Mold

  • CFD Modeling and Simulation in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In the current study, a mathematical model was established to investigate meniscus solidification and slag infiltration in the mold. The model considered the two-dimensional steel-slag-air three-phase fluid flow, heat transfer, solidification of the steel and mold oscillation. The calculated solidification shell was compared with measured hook lines to validate the model. The initial solidification and slag infiltration at the meniscus were revealed during an oscillation cycle. The influence of casting parameters on initial solidification was studied. Through simulations, the liquid slag flowed into the gap between the steel shell and copper plate during the positive strip stage, while it flowed out of the gap during the negative strip stage. The solidification depth of the meniscus from the solidification tip to the inner mold face reduced with the increase of casting temperature and casting speed and the decrease of water flow rate in the mold and oscillation amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Takeuchi, Ph.D. Thesis, UBC (1984).

  2. E. Takeuchi and J. Brimacombe, Metall. Trans. B 15, 493 (1984).

    Article  Google Scholar 

  3. P.E. Ramirez-Lopez, K.C. Mills, P.D. Lee, and B. Santillana, Metall. Mater. Trans. B 43, 109 (2012).

    Article  Google Scholar 

  4. J. Sengupta, B.G. Thomas, H.J. Shin, G.G. Lee, and S.H. Kim, Metall. Mater. Trans. A 37, 1597 (2006).

    Article  Google Scholar 

  5. E. Takeuchi and J. Brimacombe, Metall. Mater. Trans. B 16, 605 (1985).

    Article  Google Scholar 

  6. S. Harada, S. Tanaka, H. Misumi, S. Mizoguchi, and H. Horiguchi, ISIJ Int. 30, 310 (1990).

    Article  Google Scholar 

  7. J. Sengupta, H.J. Shin, B. Thomas, and S.H. Kim, Acta Mater. 54, 1165 (2006).

    Article  Google Scholar 

  8. H. Yamamura, Y. Mizukami, and K. Misawa, ISIJ Int. 36, S223 (1996).

    Article  Google Scholar 

  9. C. Ojeda, J. Sengupta, B.G. Thomas, J. Barco and J.L. Arana, in: Proceedings of the Iron & Steel Technology Conference and Exposition (AISTech), pp. 1017–28 (2006).

  10. P.E. Ramirez-Lopez, P.D. Lee, K.C. Mills, and B. Santillana, ISIJ Int. 50, 1797 (2010).

    Article  Google Scholar 

  11. P.E. Ramirez-Lopez, Ph.D. Thesis, Imperial College London (2010).

  12. P.E. Ramirez-Lopez, U. Sjöström, P.D. Lee, K.C. Mills, B. Jonsson and J. Janis, in: Proceedings of the Iron & Steel Technology Conference and Exposition (AISTech), pp. 1259–1268 (2012).

  13. A. Jonayat and B.G. Thomas, Metall. Mater. Trans. B 45, 1842 (2014).

    Article  Google Scholar 

  14. P. Lyu, W. Wang, and H. Zhang, Metall. Mater. Trans. B 48, 247 (2017).

    Article  Google Scholar 

  15. H. Zhang and W. Wang, Metall. Mater. Trans. B 48, 779 (2017).

    Article  Google Scholar 

  16. X. Zhang, W. Chen, and L. Zhang, China Foundry 14, 416 (2017).

    Article  Google Scholar 

  17. Y. Meng and B.G. Thomas, Metall. Mater. Trans. B 34, 685 (2003).

    Article  Google Scholar 

  18. S. Zhang, Q. Wang, S. He, and Q. Wang, Metall. Mater. Trans. B 49, 2038 (2018).

    Article  Google Scholar 

  19. K. Schwerdtfeger and H. Sha, Metall. Mater. Trans. B 31, 813 (2000).

    Article  Google Scholar 

  20. A. Cramb and F. Mannion, in: Steelmaking Proceedings, pp. 349–359 (1985).

  21. G.G. Lee, H.J. Shin, S.H. Kim, S.K. Kim, W.Y. Choi, and B.G. Thomas, Ironmaking Steelmaking 36, 39 (2009).

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful for support from the National Science Foundation China (Grant Nos. 51725402 and 51504020), the Fundamental Research Funds for the Central Universities (Grant Nos. FRF-TP-15-001C2 and 2015021642901), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and the High Quality Steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Ren or Lifeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, W., Scheller, P.R. et al. Mathematical Modeling of Initial Solidification and Slag Infiltration at the Meniscus of Slab Continuous Casting Mold. JOM 71, 78–87 (2019). https://doi.org/10.1007/s11837-018-3177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3177-5

Navigation