Skip to main content
Log in

Energetic Ion Irradiation-Induced Disordered Nanochannels for Fast Ion Conduction

  • Advancement in Solid Oxide Fuel Cell Research
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Atomically disordered oxides are seen as suitable candidate for fast oxygen conduction due to their remarkable enhancement in oxygen diffusivity compared with ordered oxides. In particular, disordered derivatives of pyrochlore-structured oxides (A2B2O7) are seen as an interesting prospect due to the intrinsic existence of oxygen vacancies in their lattice. Using energetic ion irradiation, we demonstrated fabrication of structurally disordered nanoscale channels in A2B2O7 (A = Gd, Yb; B = Ti, Zr) that act as selective pathways for fast oxygen conduction. Atomic-level characterization revealed that the amorphous core and surrounding defect-fluorite phase in the nanochannels exhibited distorted and differently coordinated Ti-O polyhedra, with very similar electronic structure. The formation of defect-fluorite structure is facilitated by a decrease in the difference between the ionic radii of A- and B-site cations in the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Tuller, Springer Handbook of Electronic and Photonic Materials, ed. S. Kasap and P. Capper (New York: Springer, 2007), pp. 213–228.

    Google Scholar 

  2. H.L. Tuller, J. Phys. Chem. Solids 55, 1393 (1994).

    Article  Google Scholar 

  3. T.J. Pennycook, M.J. Beck, K. Varga, M. Varela, S.J. Pennycook, and S.T. Pantelides, Phys. Rev. Lett. 104, 115901 (2010).

    Article  Google Scholar 

  4. H.L. Tuller, Solid State Ionics 131, 143 (2000).

    Article  Google Scholar 

  5. H.Y. Xiao, L.M. Wang, X.T. Zu, J. Lian, and R.C. Ewing, J. Phys. Condens. Matter 19, 346203 (2007).

    Article  Google Scholar 

  6. M. Pirzada, R.W. Grimes, L. Minervini, J.F. Maguire, and K.E. Sickafus, Solid State Ionics 140, 201 (2001).

    Article  Google Scholar 

  7. R. Sachan, V.R. Cooper, B. Liu, D.S. Aidhy, B.K. Voas, M. Lang, X. Ou, C. Trautmann, Y. Zhang, M.F. Chisholm, and W.J. Weber, J. Phys. Chem. C 121, 975 (2017).

    Article  Google Scholar 

  8. D.S. Aidhy, R. Sachan, E. Zarkadoula, O. Pakarinen, M.F. Chisholm, Y. Zhang, and W.J. Weber, Sci. Rep. 5, 16297 (2015).

    Article  Google Scholar 

  9. P.K. Moon and H.L. Tuller, Solid State Ionics 28, 470 (1988).

    Article  Google Scholar 

  10. M. Lang, F. Zhang, J. Zhang, J. Wang, J. Lian, W.J. Weber, B. Schuster, C. Trautmann, R. Neumann, and R.C. Ewing, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 2951 (2010).

    Article  Google Scholar 

  11. M. Lang, F. Zhang, J. Zhang, J. Wang, B. Schuster, C. Trautmann, R. Neumann, U. Becker, and R.C. Ewing, Nat. Mater. 8, 793 (2009).

    Article  Google Scholar 

  12. R. Sachan, E. Zarkadoula, M. Lang, C. Trautmann, Y. Zhang, M.F. Chisholm, and W.J. Weber, Sci. Rep. 6, 27196 (2016).

    Article  Google Scholar 

  13. R. Sachan, O.H. Pakarinen, P. Liu, M.K. Patel, M.F. Chisholm, Y. Zhang, X.L. Wang, and W.J. Weber, J. Appl. Phys. 117, 135902 (2015).

    Article  Google Scholar 

  14. R. Sachan, Y. Zhang, X. Ou, C. Trautmann, M.F. Chisholm, and W.J. Weber, J. Mater. Res. 32, 928 (2017).

    Article  Google Scholar 

  15. S.L. Daraszewicz and D.M. Duffy, Nucl. Instrum. Methods Phys. Res. Sect. B 269, 1646 (2011).

    Article  Google Scholar 

  16. F. Studer, M. Hervieu, J.M. Costantini, and M. Toulemonde, Nucl. Instrum. Methods Phys. Res. Sect. B 122, 449 (1997).

    Article  Google Scholar 

  17. D.M. Duffy, N. Itoh, A.M. Rutherford, and A.M. Stoneham, J. Phys. Condens. Matter 20, 082201 (2008).

    Article  Google Scholar 

  18. R. Sachan, M.W. Ullah, M.F. Chisholm, W.J. Weber, J. Liu, P. Zhai, P. Kluth, C. Trautmann, H. Bei, and Y. Zhang, Mater. Des. 150, 1 (2018).

    Article  Google Scholar 

  19. C. Lu, K. Jin, L.K. Béland, F. Zhang, T. Yang, L. Qiao, Y. Zhang, H. Bei, H.M. Christen, R.E. Stoller, and L. Wang, Sci. Rep. 6, 19994 (2016).

    Article  Google Scholar 

  20. Y. Zhang, R. Sachan, O.H. Pakarinen, M.F. Chisholm, P. Liu, H. Xue, and W.J. Weber, Nat. Commun. 6, 8049 (2015).

    Article  Google Scholar 

  21. Y. Zhang, H. Xue, E. Zarkadoula, R. Sachan, C. Ostrouchov, P. Liu, X.L. Wang, S. Zhang, T.S. Wang, and W.J. Weber, Curr. Opin. Solid State Mater. Sci. 21, 285 (2017).

    Article  Google Scholar 

  22. W.J. Weber, E. Zarkadoula, O.H. Pakarinen, R. Sachan, M.F. Chisholm, P. Liu, H. Xue, K. Jin, and Y. Zhang, Sci. Rep. 5, 7726 (2015).

    Article  Google Scholar 

  23. H. Xue, E. Zarkadoula, R. Sachan, Y. Zhang, C. Trautmann, and W.J. Weber, Acta Mater. 150, 351 (2018).

    Article  Google Scholar 

  24. J. Zhang, M. Lang, R.C. Ewing, R. Devanathan, W.J. Weber, and M. Toulemonde, J. Mater. Res. 25, 1344 (2010).

    Article  Google Scholar 

  25. J. Shamblin, M. Feygenson, J. Neuefeind, C.L. Tracy, F. Zhang, S. Finkeldei, D. Bosbach, H. Zhou, R.C. Ewing, and M. Lang, Nat. Mater. 15, 507 (2016).

    Article  Google Scholar 

  26. R. Sachan, B. Liu, D. Aidhy, Y. Zhang, M.F. Chisholm, and W.J. Weber, Microsc. Microanal. 21, 1333 (2015).

    Article  Google Scholar 

  27. K.E. Sickafus, L. Minervini, R.W. Grimes, J.A. Valdez, M. Ishimaru, F. Li, K.J. McClellan, and T. Hartmann, Science 289, 748 (2000).

    Article  Google Scholar 

  28. R. Sachan, E. Zarkadoula, X. Ou, C. Trautmann, Y. Zhang, M.F. Chisholm, and W.J. Weber, ACS Appl. Mater. Interfaces 10, 16731 (2018).

    Article  Google Scholar 

  29. L. Minervini, R.W. Grimes, and K.E. Sickafus, J. Am. Ceram. Soc. 83, 1873 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

R.S. acknowledges the National Academy of Sciences (NAS), USA, for the award of an NRC research fellowship. This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division under Contract No. DE-AC05-00OR22725. We acknowledge that the 55-MeV I ion irradiation was performed at the Ion Beam Center of Helmholtz-Zentrum Dresden-Rossendorf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Sachan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachan, R., Chisholm, M.F., Ou, X. et al. Energetic Ion Irradiation-Induced Disordered Nanochannels for Fast Ion Conduction. JOM 71, 103–108 (2019). https://doi.org/10.1007/s11837-018-3171-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3171-y

Navigation