Skip to main content
Log in

Thermodynamic and Experimental Evaluation of La1−xSrxMnOδ Cathode in Presence of Cr-Containing Humidified Air

  • Solid Oxide Fuel Cells: Recent Scientific and Technological Advancements
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Thermodynamic predictions were carried out on the phase stability of the lanthanum manganite (LSM)/yttria-stabilized zirconia (YSZ) system in presence and absence of Cr-containing dry and humidified atmosphere over broad ranges of temperature, oxygen partial pressure, and humidity. Formation of Mn oxides, La2Zr2O7, SrZrO3, Mn(Mn,Cr)2O4 (spinel), and zirconia was predicted, in agreement with previous experimental efforts. Humidity enhances the perovskite degradation by increasing the kinetics of secondary phase formation reactions. The impact of Cr6+ poisoning is more significant in presence of humidity in the atmosphere, as volatile Cr6+ species, in the form of CrO3 and CrO2(OH)2, may diffuse into the perovskite structure and change its phase stability and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Blum, L.G.J. de Haart, J. Malzbender, N.H. Menzler, J. Remmel, and R. Steinberger-Wilckens, J. Power Sources 241, 477 (2013).

    Article  Google Scholar 

  2. J. Malzbender, P. Batfalsky, R. Vaben, V. Shemet, and F. Tietz, J. Power Sources 201, 196 (2012).

    Article  Google Scholar 

  3. R.R. Liu, S.H. Kim, S. Taniguchi, T. Oshima, Y. Shiratori, K. Ito, and K. Sasaki, J. Power Sources 196, 7090 (2011).

    Article  Google Scholar 

  4. S.H. Kim, K.B. Shim, C.S. Kim, J.T. Chou, T. Oshima, Y. Shiratori, K. Ito, and K. Sasaki, J. Fuel Cell Sci. Technol. 7, 021011 (2010).

    Article  Google Scholar 

  5. Y. Yu, H. Luo, D. Cetin, X. Lin, K. Ludwig, U. Pal, S. Gopalan, and S. Basu, Appl. Surf. Sci. 323, 71 (2014).

    Article  Google Scholar 

  6. B. Hu, M. Keane, M.K. Mahapatra, and P. Singh, J. Power Sources 248, 196 (2014).

    Article  Google Scholar 

  7. B. Hu, M.K. Mahapatra, M. Keane, H. Zhang, and P. Singh, J. Power Sources 268, 404 (2014).

    Article  Google Scholar 

  8. C. Knöfel, M. Chen, and M. Mogensen, Fuel Cells 11, 669 (2011).

    Article  Google Scholar 

  9. K. Chen, N. Ai, and S.P. Jiang, Int. J. Hydrogen Energy 37, 10517 (2012).

    Article  Google Scholar 

  10. E.D. Wachsman, Y.-L. Huang, C. Pellegrinelli, J.A. Taillon, and L.G. Salamanca-Riba, ECS Trans. 61, 47 (2014).

    Article  Google Scholar 

  11. C. Graves, S.D. Ebbesen, and M. Mogensen, Solid State Ion. 192, 398 (2011).

    Article  Google Scholar 

  12. B. Hu, S. Krishnan, C. Liang, S.J. Heo, A.N. Aphale, R. Ramprasad, and P. Singh, Int. J. Hydrogen Energy 42, 10208 (2017).

    Article  Google Scholar 

  13. J. Nielsen and M. Mogensen, Solid State Ion. 189, 74 (2011).

    Article  Google Scholar 

  14. J. Hardy, J. Stevenson, P. Singh, M. Mahapatra, E. Wachsman, M. Liu, and K. Gerdes, Effects of humidity on solid oxide fuel cell cathodes, Department of Energy Report (2015).

  15. T. Jin and K. Lu, J. Power Sources 197, 20 (2012).

    Article  Google Scholar 

  16. A. Hagen, K. Neufeld, and Y.-L. Liu, J. Electrochem. Soc. 157, B1343 (2010).

    Article  Google Scholar 

  17. Y. Huang, C. Pellegrinelli, and E. Wachsman, J. Electrochem. Soc. 163, F171 (2016).

    Article  Google Scholar 

  18. H. Sabarou, S. Darvish, S. Gupta, P. Singh, and Y. Zhong, Solid State Ion. 310, 1 (2017).

    Article  Google Scholar 

  19. S. Darvish, M. Asadikiya, B. Hu, P. Singh, and Y. Zhong, Int. J. Hydrogen Energy 41, 10239 (2016).

    Article  Google Scholar 

  20. S. Darvish, S. Gopalan, and Y. Zhong, J. Power Sources 336, 351 (2016).

    Article  Google Scholar 

  21. C.C. Wang, S. He, K. Chen, M.R. Rowles, S. Darvish, Y. Zhong, and S.P. Jiang, J. Electrochem. Soc. 164, F514 (2017).

    Article  Google Scholar 

  22. Z. Lu, S. Darvish, J. Hardy, J. Templeton, J. Stevenson, and Y. Zhong, J. Electrochem. Soc. 164, F3097 (2017).

    Article  Google Scholar 

  23. Z. Yang, M. Guo, N. Wang, C. Ma, J. Wang, and M. Han, Int. J. Hydrogen Energy 42, 24948 (2017).

    Article  Google Scholar 

  24. D.-J. Liu, J. Almer, and T. Cruse, J. Electrochem. Soc. 157, B744 (2010).

    Article  Google Scholar 

  25. M.A. Uddin, A. Aphale, B. Hu, S.J. Heo, U. Pasaogullari, and P. Singh, J. Electrochem. Soc. 164, F1342 (2017).

    Article  Google Scholar 

  26. M. Krumpelt, T.A. Cruse, B.J. Ingram, J.L. Routbort, S. Wang, P.A. Salvador, and G. Chen, J. Electrochem. Soc. 157, B228 (2010).

    Article  Google Scholar 

  27. S.J. Heo, B. Hu, A.N. Aphale, M.A. Uddin, and P. Singh, ECS Trans. 78, 1055 (2017).

    Article  Google Scholar 

  28. R. Wang, Z. Sun, U.B. Pal, S. Gopalan, and S.N. Basu, J. Power Sources 376, 100 (2018).

    Article  Google Scholar 

  29. R. Wang, M. Würth, U.B. Pal, S. Gopalan, and S.N. Basu, J. Power Sources 360, 87 (2017).

    Article  Google Scholar 

  30. X. Chen, Y. Zhen, J. Li, and S.P. Jiang, Int. J. Hydrogen Energy 35, 2477 (2010).

    Article  Google Scholar 

  31. M. Hillert, J. Alloys Compd. 320, 161 (2001).

    Article  Google Scholar 

  32. A.N. Grundy, CALPHAD Assessment of the La-Sr-Mn-O System and the Defect Chemistry of (La, Sr)MnO 3 Perovskites used as Solid Oxide Fuel Cell Cathode Materials (Dissertation, Swiss Institute of Technology, Zurich, 2003).

    Google Scholar 

  33. Q. Xu, D.-P. Huang, W. Chen, J.-H. Lee, H. Wang, and R.-Z. Yuan, Scr. Mater. 50, 165 (2004).

    Article  Google Scholar 

  34. M. Chen, Thermodynamic modeling of La-Sr-Mn-O-Y-Zr, Private communication (2006).

  35. Scientific Group Thermodata Europe, SGTE Substances Database-SSUB5.

  36. M. Yang, Y. Zhong, and Z.K. Liu, Solid State Ion. 178, 1072 (2007).

    Article  Google Scholar 

  37. S.H. Lee, V.R. Manga, M.F. Carolan, and Z.K. Liu, J. Electrochem. Soc. 160, F1103 (2013).

    Article  Google Scholar 

  38. M. Yang, Thermodynamic modeling of La 1-x Sr x CoO 3-d (Dissertation, The Pennsylvania State University, 2006).

  39. J.E. Saal, Thermodynamic Modeling of Phase Transformations and Defects: from Cobalt to Doped Cobaltate Perovskites (Dissertation, The Pennsylvania State University, 2010), p. 268.

  40. W. Zhang, Investigation of Degradation Mechanisms of LSCF Based SOFC Cathodesby CALPHAD Modeling and Experiments (Dissertation, Technical University of Denmark, 2012).

  41. E.P. Karadeniz, Thermodynamic Database of the La-Sr-Mn-Cr-O Oxide System and Applications to Solid Oxide Fuel Cells (Dissertation, Swiss Federal Institute of Technology, Zurich, 2008).

  42. B.-K. Park, D.-W. Kim, R.-H. Song, S.-B. Lee, T.-H. Lim, S.-J. Park, C.-O. Park, and J.-W. Lee, J. Power Sources 300, 318 (2015).

    Article  Google Scholar 

  43. J. Froitzheim, G. Meier, L. Niewolak, P. Ennis, H. Hattendorf, L. Singheiser, and W. Quadakkers, J. Power Sources 178, 163 (2008).

    Article  Google Scholar 

  44. R. Sachitanand, M. Sattari, J.-E. Svensson, and J. Froitzheim, Int. J. Hydrogen Energy 38, 15328 (2013).

    Article  Google Scholar 

  45. D. Kuščer, J. Holc, M. Hrovat, S. Bernik, Z. Samardžija, and D. Kolar, Solid State Ion. 78, 79 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Florida International University Doctoral Year Fellowship (DYF) and the American Chemical Society Petroleum Research Fund (PRF#54190-DNI10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadi Darvish.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvish, S., Hu, B., Singh, P. et al. Thermodynamic and Experimental Evaluation of La1−xSrxMnOδ Cathode in Presence of Cr-Containing Humidified Air. JOM 71, 3814–3824 (2019). https://doi.org/10.1007/s11837-018-3169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3169-5

Navigation