Advertisement

JOM

, Volume 71, Issue 2, pp 492–498 | Cite as

Carbochlorination Kinetics of High-Alumina Fly Ash

  • Long Wang
  • Ting-An ZhangEmail author
  • Guo-Zhi Lv
  • Zhi-He Dou
  • Wei-Guang Zhang
  • Li-Ping Niu
Primary Aluminum Production Chain: Bauxite-Alumina-Electrode-Reduction
  • 147 Downloads

Abstract

The carbochlorination kinetics of high-alumina fly ash was investigated. The influence of reaction temperature, time, carbon content, pellet diameter, and Cl2 flow rate on the reaction was analyzed. The morphological changes of the samples during the reaction showed that different sizes of spherical particles disappeared entirely after the carbochlorination process. For carbochlorination of alumina, two kinetic regimes were identified, with activation energy of 68.84 kJ mol−1 and 20.82 kJ mol−1, being attributed to chemical reaction control (below 900°C) and diffusion control (at high temperatures). For silica, the dominant kinetic regime was chemical reaction control, with activation energy of 92.45 kJ mol−1 between 950°C and 1050°C.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1710257, U1702253, 51504059), Fundamental Research Funds for the Central Universities of China (N162504016), and State Key Laboratory of Pressure Hydrometallurgical Technology of Associated Nonferrous Metal Resources (YY2016006).

Supplementary material

11837_2018_3146_MOESM1_ESM.pdf (249 kb)
Supplementary material 1 (PDF 249 kb)

References

  1. 1.
    Z. Sun, H. Li, W. Bao, and C. Wang, Int. J. Miner. Process. 153, 109 (2016).CrossRefGoogle Scholar
  2. 2.
    L. Qi and Y. Yuan, J. Hazard. Mater. 192, 222 (2011).Google Scholar
  3. 3.
    Y. Wu, P. Xu, J. Chen, L. Li, and M. Li, Chin. J. Chem. Eng. 22, 1363 (2014).CrossRefGoogle Scholar
  4. 4.
    L. Sun, K. Luo, J. Fan, and H. Lu, Fuel 199, 22 (2017).CrossRefGoogle Scholar
  5. 5.
    C.Y. Wu, H.F. Yu, and F. Zhang, Trans. Nonferr. Met. Soc. China 22, 2282 (2012).CrossRefGoogle Scholar
  6. 6.
    J.M. Sun and P. Chen, Adv. Mater. Res. 652–654, 2570 (2013).CrossRefGoogle Scholar
  7. 7.
    Y. Guo, Z. Zhao, Q. Zhao, and F. Cheng, Hydrometallurgy 169, 418 (2017).CrossRefGoogle Scholar
  8. 8.
    A. Shemi, S. Ndlovu, V. Sibanda, and L.D.V. Dyk, Hydrometallurgy 157, 348 (2015).CrossRefGoogle Scholar
  9. 9.
    H. Li, J. Hui, C. Wang, W. Bao, and Z. Sun, Hydrometallurgy 147–148, 183 (2014).CrossRefGoogle Scholar
  10. 10.
    J. Ding, S. Ma, S. Zheng, Y. Zhang, Z. Xie, S. Shen, and Z. Liu, Hydrometallurgy 161, 58 (2016).CrossRefGoogle Scholar
  11. 11.
    R.C. Wang, Y.C. Zhai, W.U. Xiao-Wei, Z.Q. Ning, and M.A. Pei-Hua, Trans. Nonferr. Met. Soc. China 24, 1596 (2014).CrossRefGoogle Scholar
  12. 12.
    T. Zhang, G. Lv, Z. Zhang, Y. Liu, and Z. Dou, CN Patent 2017, CN107128957A.Google Scholar
  13. 13.
    A. Movahedian, S. Raygan, and M. Pourabdoli, Thermochim. Acta 512, 93 (2011).CrossRefGoogle Scholar
  14. 14.
    J. Andrade-Gamboa and D.M. Pasquevich, Metall. Mater. Trans. B 31, 1439 (2000).CrossRefGoogle Scholar
  15. 15.
    D. Ju, D. Yan, X. Li, E. Ma, Y. Zang, and J. Li, Iron Steel Van. Tit. 31, 32 (2010) (in Chinese).Google Scholar
  16. 16.
    A.P. Shaw, J.S. Brusnahan, J.C. Poret, and L.A. Morris, ACS Sustain Chem. Eng. 4, 2309 (2016).CrossRefGoogle Scholar
  17. 17.
    I. Gaballah, E. Allain, and M. Djona, Metall. Mater. Trans. B 28, 359 (1997).CrossRefGoogle Scholar
  18. 18.
    G.M. Song, Y. Zhou, and Y.J. Wang, J. Mater. Sci. 37, 3541 (2002).CrossRefGoogle Scholar
  19. 19.
    M.R. Esquivel, A.E. Bohé, and D.M. Pasquevich, Thermochim. Acta 403, 207 (2003).CrossRefGoogle Scholar
  20. 20.
    J.P. Gaviría and A.E. Bohé, Metall. Mater. Trans. B 40, 45 (2009).CrossRefGoogle Scholar
  21. 21.
    C. Tang, J. Zhu, Z. Li, R. Zhu, Q. Zhou, J. Wei, H. He, and T. Qi, Appl. Surf. Sci. 355, 1161 (2015).CrossRefGoogle Scholar
  22. 22.
    N. Kanari, I. Gaballah, and E. Allain, Metall. Mater. Trans. B 30, 577 (1999).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Long Wang
    • 1
    • 2
  • Ting-An Zhang
    • 1
    • 2
    Email author
  • Guo-Zhi Lv
    • 1
    • 2
  • Zhi-He Dou
    • 1
    • 2
  • Wei-Guang Zhang
    • 1
    • 2
  • Li-Ping Niu
    • 1
    • 2
  1. 1.School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of EducationShenyangChina

Personalised recommendations