Skip to main content

Sequential Infiltration Synthesis of Al2O3 in Polyethersulfone Membranes

Abstract

We report the sequential infiltration synthesis (SIS) of aluminum oxide (Al2O3) into polyethersulfone (PES) ultrafiltration (UF) membranes to form hybrid nanocomposites. SIS relies on chemical interactions between precursor vapors and polymer functional groups, and enables nucleation and growth of inorganic materials to controlled depth. Using in situ Fourier-transform infrared spectroscopy and ellipsometry measurements, we demonstrate that trimethylaluminum associates with the sulfonyl groups in PES, extending the library of SIS-modified polymer nanocomposites to a previously undescribed polymer system and new application space: PES UF membranes. Depth-profiled x-ray photoelectron spectroscopy showed that the trimethylaluminum purge time dictates the extent of Al2O3 infiltration. Energy dispersive spectroscopy revealed the differences between SIS and atomic layer deposition in the membranes. This work demonstrates the viability of SIS to access the entire macroporous volume of PES UF membranes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Q. Peng, Y.C. Tseng, S.B. Darling, and J.W. Elam, Adv. Mater. 22, 5129 (2010).

    Article  Google Scholar 

  2. 2.

    Q. Peng, Y.C. Tseng, S.B. Darling, and J.W. Elam, ACS Nano 5, 4600 (2011).

    Article  Google Scholar 

  3. 3.

    J. Frascaroli, E. Cianci, S. Spiga, G. Seguini, and M. Perego, ACS Appl. Mater. Interfaces 8, 33933 (2016).

    Article  Google Scholar 

  4. 4.

    M. Biswas, J.A. Libera, S.B. Darling, and J.W. Elam, Chem. Mater. 26, 6135 (2014).

    Article  Google Scholar 

  5. 5.

    M. Biswas, J.A. Libera, S.B. Darling, and J.W. Elam, J. Phys. Chem. C 119, 14585 (2015).

    Article  Google Scholar 

  6. 6.

    B. Gong and G.N. Parsons, J. Mater. Chem. 22, 15672 (2012).

    Article  Google Scholar 

  7. 7.

    E.C. Dandley, C.D. Needham, P.S. Williams, A.H. Brozena, C.J. Oldham, and G.N. Parsons, J. Mater. Chem. C. 2, 9416 (2014).

    Article  Google Scholar 

  8. 8.

    C.Z. Leng and M.D. Losego, Mater. Horiz. 4, 747 (2017).

    Article  Google Scholar 

  9. 9.

    R.P. Padbury and J.S. Jur, J. Vac. Sci. Technol. A 33, 01A112 (2015).

    Article  Google Scholar 

  10. 10.

    G.N. Parsons, S.E. Atanasov, E.C. Dandley, C.K. Devine, B. Gong, J.S. Jur, K. Lee, C.J. Oldham, Q. Peng, J.C. Spagnola, and P.S. Williams, Coord. Chem. Rev. 257, 3323 (2013).

    Article  Google Scholar 

  11. 11.

    C.-Y. Nam, A. Stein, and K. Kisslinger, J. Vac. Sci. Technol. B 33, 06F201 (2015).

    Article  Google Scholar 

  12. 12.

    C.-Y. Nam, A. Stein, K. Kisslinger, and C.B. Black, Appl. Phys. Lett. 107, 203106 (2015).

    Article  Google Scholar 

  13. 13.

    C.-Y. Nam and A. Stein, Adv. Opt. Mater. 5, 1 (2017).

    Google Scholar 

  14. 14.

    J. Yin, Q. Xu, Z. Wang, X. Yao, and Y. Wang, J. Mater. Chem. C 1, 1029 (2013).

    Article  Google Scholar 

  15. 15.

    R. Ruiz, L. Wan, J. Lille, K.C. Patel, E. Dobisz, D.E. Johnston, K. Kisslinger, and C.B. Black, J. Vac. Sci. Technol. B 30, 06F202 (2012).

    Article  Google Scholar 

  16. 16.

    D. Berman, S. Guha, B. Lee, J.W. Elam, S.B. Darling, and E.V. Shevchenko, ACS Nano 11, 2521 (2017).

    Article  Google Scholar 

  17. 17.

    C. Zhou, T. Segal-Peretz, M.E. Oruc, H.S. Suh, G. Wu, and P.F. Nealey, Adv. Funct. Mater. 27, 1701756 (2017).

    Article  Google Scholar 

  18. 18.

    Y.C. Tseng, Q. Peng, L.E. Ocola, D.A. Czaplewski, J.W. Elam, and S.B. Darling, J. Vac. Sci. Technol. B 29, 06FG01 (2011).

    Article  Google Scholar 

  19. 19.

    Y.C. Tseng, A.U. Mane, J.W. Elam, and S.B. Darling, Adv. Mater. 24, 2608 (2012).

    Article  Google Scholar 

  20. 20.

    K.J. Dusoe, X. Ye, K. Kisslinger, A. Stein, S.-W. Lee, and C.-Y. Nam, Nano Lett. 17, 7416 (2017).

    Article  Google Scholar 

  21. 21.

    H.I. Akyildiz, M. Lo, E. Dillon, A.T. Roberts, H.O. Everitt, and J.S. Jur, J. Mater. Res. 29, 2817 (2014).

    Article  Google Scholar 

  22. 22.

    E. Barry, J.A. Libera, A.U. Mane, J.R. Avila, D. DeVitis, K. Van Dyke, J.W. Elam, and S.B. Darling, Environ. Sci. Water Res. Technol. 4, 40 (2018).

    Article  Google Scholar 

  23. 23.

    E. Barry, A.U. Mane, J.A. Libera, J.W. Elam, and S.B. Darling, J. Mater. Chem. A 5, 2929 (2017).

    Article  Google Scholar 

  24. 24.

    T. Segal-Peretz, J. Winterstein, M. Doxastakis, A. Ramirez-Hernandez, M. Biswas, J. Ren, H.S. Suh, S.B. Darling, J.A. Liddle, J.W. Elam, J.J. de Pablo, N.J. Zaluzec, and P.F. Nealey, ACS Nano 9, 5333 (2015).

    Article  Google Scholar 

  25. 25.

    G. Liu, M.P. Stoykovich, S. Ji, K.O. Stuen, G.S.W. Craig, and P.F. Nealey, Macromolecules 42, 3063 (2009).

    Article  Google Scholar 

  26. 26.

    R.B. Rigby, Engineering Thermoplastics: Properties and Applications (New York: Marcel Dekker, 1985).

    Google Scholar 

  27. 27.

    A.L. Ahmad, A.A. Abdulkarim, B.S. Ooi, and S. Ismail, Chem. Eng. J. 223, 246 (2013).

    Article  Google Scholar 

  28. 28.

    C. Zhao, J. Xue, F. Ran, and S. Sun, Prog. Mater. Sci. 58, 76 (2013).

    Article  Google Scholar 

  29. 29.

    J.F. Li, Z.L. Xu, H. Yang, L.Y. Yu, and M. Liu, Appl. Surf. Sci. 255, 4725 (2009).

    Article  Google Scholar 

  30. 30.

    N. Maximous, G. Nakhla, K. Wong, and W. Wan, Sep. Purif. Technol. 73, 294 (2010).

    Article  Google Scholar 

  31. 31.

    S. Simone, F. Galiano, M. Faccini, M. Boerrigter, C. Chaumette, E. Drioli, and A. Figoli, Fibers 5, 14 (2017).

    Article  Google Scholar 

  32. 32.

    A. Razmjou, J. Mansouri, V. Chen, M. Lim, and R. Amal, J. Membr. Sci. 380, 98 (2010).

    Article  Google Scholar 

  33. 33.

    H. Chen, L. Kong, and Y. Wang, J. Membr. Sci. 487, 109 (2015).

    Article  Google Scholar 

  34. 34.

    Q. Xu, Y. Yang, J. Yang, X. Wang, Z. Wang, and Y. Wang, J. Membr. Sci. 443, 62 (2013).

    Article  Google Scholar 

  35. 35.

    F. Li, L. Li, X. Liao, and Y. Wang, J. Membr. Sci. 385–386, 1 (2011).

    Article  Google Scholar 

  36. 36.

    Q. Wang, X. Wang, Z. Wang, J. Huang, and Y. Wang, J. Membr. Sci. 442, 57 (2013).

    Article  Google Scholar 

  37. 37.

    S.J. Yu, J.W. Lim, and J.-H. Lee, Electrochem. Sloid State Lett. 7, C13 (2004).

    Article  Google Scholar 

  38. 38.

    P.E. Petrochenko, G. Scarel, G.K. Hyde, G.N. Parsons, S.A. Skoog, Q. Zhang, P.L. Goering, and R.J. Narayan, JOM 65, 550 (2013).

    Article  Google Scholar 

  39. 39.

    T. Cheng, H. Chen, S. Xiong, X. Chen, and Y. Wang, AIChE J. 60, 3614 (2014).

    Article  Google Scholar 

  40. 40.

    R.Z. Waldamn, H.-C. Yang, D.J. Mandia, P.F. Nealey, J.W. Elam, and S.B. Darling, Adv. Mater. Interfaces 5, 1800658 (2018).

    Article  Google Scholar 

  41. 41.

    J.W. Elam, J.A. Libera, M.J. Pellin, and P.C. Stair, Appl. Phys. Lett. 91, 177 (2007).

    Google Scholar 

  42. 42.

    W.-H. Lau, M. Guiver, and T. Matsuura, J. Membr. Sci. 59, 219 (1991).

    Article  Google Scholar 

  43. 43.

    D.J. Comstock and J.W. Elam, J. Phys. Chem. C 117, 1677 (2013).

    Article  Google Scholar 

  44. 44.

    X. Ye, K. Kisslinger, M. Liu, R.B. Grubbs, J.A. Boscoboinik, and C.-Y. Nam, Chem. Mater. 29, 4535 (2017).

    Article  Google Scholar 

  45. 45.

    M.J. Frisch, G.W. Trucks, H.B. Schlefel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, B. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. BLoino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Oligaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Ivengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakeen, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT (2009).

  46. 46.

    M. Fontyn, K. van’t Riet, and B.H. Bijsterbosch, Colloids Surf. 54, 331 (1991).

    Article  Google Scholar 

  47. 47.

    M.L. Mendez, A.I. Romero, V.B. Rajal, E.F. Castro, J.I. Calvo, L. Palacio, and A. Hernandez, Polym. Eng. Sci. 54, 1211 (2014).

    Article  Google Scholar 

  48. 48.

    J.H. Choi, J. Jegal, and W.N. Kim, J. Membr. Sci. 285, 406 (2006).

    Article  Google Scholar 

  49. 49.

    D.G. Goldstein, J.A. McCormick, and S.M. George, J. Phys. Chem. C 112, 19530 (2008).

    Article  Google Scholar 

  50. 50.

    G.A. Atiya, A.S. Grady, D.K. Russell, and T.A. Claxton, Spectrochim. Acta Part A Mol. Spectrosc. 47, 467 (1991).

    Article  Google Scholar 

  51. 51.

    B.G. Frederick, G. Apai, and T.N. Rhodin, Phys. Rev. B 44, 1880 (1991).

    Article  Google Scholar 

  52. 52.

    K. Sollia, M. Ystenes, and P. Sobotab, Proc. SPIE 1575, 608 (1991).

    Article  Google Scholar 

  53. 53.

    Q. Xu, J. Yang, J. Dai, Y. Yang, X. Chen, and Y. Wang, J. Membr. Sci. 448, 215 (2013).

    Article  Google Scholar 

  54. 54.

    A. Lee, J.A. Libera, R.Z. Waldman, A. Ahmed, J.R. Avila, J.W. Elam, and S.B. Darling, Adv. Sustain. Syst. 1, 1600041 (2017).

    Article  Google Scholar 

  55. 55.

    A. Yanguas-Gil and J.W. Elam, Chem. Vap. Depos. 18, 46 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This material was based upon work supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. This work made use of the Pritzker Nanofabrication Facility of the Institute for Molecular Engineering at the University of Chicago, which receives support from Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), a node of the National Science Foundation’s National Nanotechnology Coordinated Infrastructure. Parts of this work were carried out at the Soft Matter Characterization Facility of the University of Chicago. The authors also acknowledge the MRSEC Shared User Facilities at the University of Chicago (NSF DMR-1420709) and the Geophysical Sciences Division at the University of Chicago.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seth B. Darling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4509 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Waldman, R.Z., Choudhury, D., Mandia, D.J. et al. Sequential Infiltration Synthesis of Al2O3 in Polyethersulfone Membranes. JOM 71, 212–223 (2019). https://doi.org/10.1007/s11837-018-3142-3

Download citation