Skip to main content
Log in

A New Technique for Recovering Copper From Complex Copper Oxide Ore by Flotation and Metallurgical Processing

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Copper oxide ore has a complex composition, and a low recovery rate is often achieved via the traditional sorting method. A new combined process of flotation–high-gradient magnetic separation–leaching is proposed here to recover copper minerals. The test results showed that the flotation process was successful when using sodium sulfide as a vulcanizing agent and butyl xanthate as a collector. The flotation concentrates can be qualified with a copper grade of 29.37% and a recovery rate of 32.22%. Flotation tailings separated by high-gradient magnetic separation can yield two products, namely, magnetic separation concentrates and magnetic separation tailings, via the leaching recovery of the remaining copper minerals. However, the leaching conditions are different. The leaching rates of copper from magnetic separation concentrates and tailings are 28.44% and 26.95%, respectively. The total copper recovery is 87.61%. This new technology introduces a high-gradient magnetic separation process, which achieves the requirements of low energy consumption and high-efficiency copper recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.S. Deng, S.M. Wen, J.Y. Deng, and D.D. Wu, Int. J. Miner. Metall. Mater. 22, 241 (2015).

    Article  Google Scholar 

  2. Q.C. Feng, W.J. Zhao, and S.M. Wen, Appl. Surf. Sci. 436, 823 (2018).

    Article  Google Scholar 

  3. Q.C. Feng, S.M. Wen, J.S. Deng, and W.J. Zhao, Appl. Surf. Sci. 425, 8 (2017).

    Article  Google Scholar 

  4. C. Owusu, D. Fornasiero, J. Addai-Mensah, and M. Zanin, Int. J. Miner. Process. 134, 50 (2015).

    Article  Google Scholar 

  5. K. Lee, D. Archibald, and M.A. Mclean, Miner. Eng. 22, 395 (2009).

    Article  Google Scholar 

  6. Y. Vazifeh, E. Jorjani, and A. Bagherian, Trans. Nonferrous Met. Soc. China 20, 2371 (2010).

    Article  Google Scholar 

  7. J.S. Deng, S.M. Wen, J.Y. Deng, D.D. Wu, and J. Yang, J. Chem. Eng. Jpn 48, 1 (2015).

    Article  Google Scholar 

  8. R. Vračar, L. Šaljić, M. Sokić, V. Matković, and S. Radosavljević, Scand. J. Metall. 32, 289 (2003).

    Article  Google Scholar 

  9. J.W. Han, J. Xiao, W.Q. Qin, D.X. Chen, and W. Liu, JOM 69, 1563 (2017).

    Article  Google Scholar 

  10. W.J. Bruckard, G.J. Sparrow, and J.T. Woodcock, Int. J. Miner. Process. 100, 1 (2011).

    Article  Google Scholar 

  11. G.A. Hope, R. Woods, G.K. Parker, A.N. Buckley, and J. McLean, Miner. Eng. 23, 952 (2010).

    Article  Google Scholar 

  12. C. Marion, A. Jordens, R. Li, M. Rudolph, and K.E. Waters, Sep. Purif. Technol. 183, 258 (2017).

    Article  Google Scholar 

  13. Z. Li, M. Chen, X.W. Li, Z.W. Lei, J. Qu, P.W. Huang, Q.W. Zhang, and F. Saito, Adv. Powder Technol. 28, 1877 (2017).

    Article  Google Scholar 

  14. A.N. Buckley, G.A. Hope, G.K. Parker, J. Steyn, and R. Woods, Miner. Eng. 109, 80 (2017).

    Article  Google Scholar 

  15. Q. Zhao, W. Liu, D.Z. Wei, W.D. Wang, B.Y. Cui, and W.B. Liu, Min. Eng. 115, 44 (2018).

    Article  Google Scholar 

  16. X.M. Chen, D. Seaman, Y.J. Peng, and D. Bradshaw, Min. Eng. 66–68, 165 (2014).

    Article  Google Scholar 

  17. G.A. Hope, A.N. Buckley, G.K. Parker, A. Numprasanthai, R. Woods, and J. McLean, Min. Eng. 36–38, 2 (2012).

    Article  Google Scholar 

  18. J.S. Deng, S.M. Wen, J. Liu, D.D. Wu, and Q.C. Feng, Trans. Nonferrous Met. Soc. China 24, 3955 (2014).

    Article  Google Scholar 

  19. M. Sokić, V. Matković, J. Stojanović, B. Marković, and V. Manojlović, Metall. Mater. Eng. 22, 261 (2016).

    Article  Google Scholar 

  20. N. Habbache, N. Alane, S. Djerad, and L. Tifouti, Chem. Eng. J. 152, 503 (2009).

    Article  Google Scholar 

  21. Y.B. Mao, J.S. Deng, S.M. Wen, and J.J. Fang, Chem. Pap. 69, 1187 (2015).

    Article  Google Scholar 

  22. Q.C. Feng, W.J. Zhao, S.M. Wen, and Q.B. Cao, Sep. Purif. Technol. 178, 193 (2017).

    Article  Google Scholar 

  23. R.B. Lorenzo, H.U. Ronaldo, S.N. César, F.O. Alfonso, G.F. Alex, and G. Rosanna, Miner. Eng. 24, 1603 (2011).

    Article  Google Scholar 

  24. M. Sokić, V. Milošević, V. Stanković, V. Matković, and B. Marković, Hem. Ind. 69, 453 (2015).

    Article  Google Scholar 

  25. M.D. Turan and H.S. Altundoğan, Int. J. Miner. Metall. Mater. 21, 862 (2014).

    Article  Google Scholar 

  26. X. Sun, B. Chen, X. Yang, and Y. Liu, J. Cent. South Univ. Technol. 16, 936 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This research project was supported by the National Natural Science Foundation of China (Grant Nos. 51464029 and 51704135), the Analysis and Testing Foundation of Kunming University of Science and Technology (Grant No. 2017P20161101009), and a project funded by China Postdoctoral Science Foundation (Grant No. 2018T111000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Ming Wen or Qi-Cheng Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Wen, SM., Feng, QC. et al. A New Technique for Recovering Copper From Complex Copper Oxide Ore by Flotation and Metallurgical Processing. JOM 71, 784–790 (2019). https://doi.org/10.1007/s11837-018-3135-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3135-2

Navigation