, Volume 71, Issue 2, pp 784–790 | Cite as

A New Technique for Recovering Copper From Complex Copper Oxide Ore by Flotation and Metallurgical Processing

  • Xu Bai
  • Shu-Ming WenEmail author
  • Qi-Cheng FengEmail author
  • Jian Liu
  • Yi-Lin Lin
  • Zhi-Hua Yao
Technical Article


Copper oxide ore has a complex composition, and a low recovery rate is often achieved via the traditional sorting method. A new combined process of flotation–high-gradient magnetic separation–leaching is proposed here to recover copper minerals. The test results showed that the flotation process was successful when using sodium sulfide as a vulcanizing agent and butyl xanthate as a collector. The flotation concentrates can be qualified with a copper grade of 29.37% and a recovery rate of 32.22%. Flotation tailings separated by high-gradient magnetic separation can yield two products, namely, magnetic separation concentrates and magnetic separation tailings, via the leaching recovery of the remaining copper minerals. However, the leaching conditions are different. The leaching rates of copper from magnetic separation concentrates and tailings are 28.44% and 26.95%, respectively. The total copper recovery is 87.61%. This new technology introduces a high-gradient magnetic separation process, which achieves the requirements of low energy consumption and high-efficiency copper recovery.



This research project was supported by the National Natural Science Foundation of China (Grant Nos. 51464029 and 51704135), the Analysis and Testing Foundation of Kunming University of Science and Technology (Grant No. 2017P20161101009), and a project funded by China Postdoctoral Science Foundation (Grant No. 2018T111000).


  1. 1.
    J.S. Deng, S.M. Wen, J.Y. Deng, and D.D. Wu, Int. J. Miner. Metall. Mater. 22, 241 (2015).CrossRefGoogle Scholar
  2. 2.
    Q.C. Feng, W.J. Zhao, and S.M. Wen, Appl. Surf. Sci. 436, 823 (2018).CrossRefGoogle Scholar
  3. 3.
    Q.C. Feng, S.M. Wen, J.S. Deng, and W.J. Zhao, Appl. Surf. Sci. 425, 8 (2017).CrossRefGoogle Scholar
  4. 4.
    C. Owusu, D. Fornasiero, J. Addai-Mensah, and M. Zanin, Int. J. Miner. Process. 134, 50 (2015).CrossRefGoogle Scholar
  5. 5.
    K. Lee, D. Archibald, and M.A. Mclean, Miner. Eng. 22, 395 (2009).CrossRefGoogle Scholar
  6. 6.
    Y. Vazifeh, E. Jorjani, and A. Bagherian, Trans. Nonferrous Met. Soc. China 20, 2371 (2010).CrossRefGoogle Scholar
  7. 7.
    J.S. Deng, S.M. Wen, J.Y. Deng, D.D. Wu, and J. Yang, J. Chem. Eng. Jpn 48, 1 (2015).CrossRefGoogle Scholar
  8. 8.
    R. Vračar, L. Šaljić, M. Sokić, V. Matković, and S. Radosavljević, Scand. J. Metall. 32, 289 (2003).CrossRefGoogle Scholar
  9. 9.
    J.W. Han, J. Xiao, W.Q. Qin, D.X. Chen, and W. Liu, JOM 69, 1563 (2017).CrossRefGoogle Scholar
  10. 10.
    W.J. Bruckard, G.J. Sparrow, and J.T. Woodcock, Int. J. Miner. Process. 100, 1 (2011).CrossRefGoogle Scholar
  11. 11.
    G.A. Hope, R. Woods, G.K. Parker, A.N. Buckley, and J. McLean, Miner. Eng. 23, 952 (2010).CrossRefGoogle Scholar
  12. 12.
    C. Marion, A. Jordens, R. Li, M. Rudolph, and K.E. Waters, Sep. Purif. Technol. 183, 258 (2017).CrossRefGoogle Scholar
  13. 13.
    Z. Li, M. Chen, X.W. Li, Z.W. Lei, J. Qu, P.W. Huang, Q.W. Zhang, and F. Saito, Adv. Powder Technol. 28, 1877 (2017).CrossRefGoogle Scholar
  14. 14.
    A.N. Buckley, G.A. Hope, G.K. Parker, J. Steyn, and R. Woods, Miner. Eng. 109, 80 (2017).CrossRefGoogle Scholar
  15. 15.
    Q. Zhao, W. Liu, D.Z. Wei, W.D. Wang, B.Y. Cui, and W.B. Liu, Min. Eng. 115, 44 (2018).CrossRefGoogle Scholar
  16. 16.
    X.M. Chen, D. Seaman, Y.J. Peng, and D. Bradshaw, Min. Eng. 66–68, 165 (2014).CrossRefGoogle Scholar
  17. 17.
    G.A. Hope, A.N. Buckley, G.K. Parker, A. Numprasanthai, R. Woods, and J. McLean, Min. Eng. 36–38, 2 (2012).CrossRefGoogle Scholar
  18. 18.
    J.S. Deng, S.M. Wen, J. Liu, D.D. Wu, and Q.C. Feng, Trans. Nonferrous Met. Soc. China 24, 3955 (2014).CrossRefGoogle Scholar
  19. 19.
    M. Sokić, V. Matković, J. Stojanović, B. Marković, and V. Manojlović, Metall. Mater. Eng. 22, 261 (2016).CrossRefGoogle Scholar
  20. 20.
    N. Habbache, N. Alane, S. Djerad, and L. Tifouti, Chem. Eng. J. 152, 503 (2009).CrossRefGoogle Scholar
  21. 21.
    Y.B. Mao, J.S. Deng, S.M. Wen, and J.J. Fang, Chem. Pap. 69, 1187 (2015).CrossRefGoogle Scholar
  22. 22.
    Q.C. Feng, W.J. Zhao, S.M. Wen, and Q.B. Cao, Sep. Purif. Technol. 178, 193 (2017).CrossRefGoogle Scholar
  23. 23.
    R.B. Lorenzo, H.U. Ronaldo, S.N. César, F.O. Alfonso, G.F. Alex, and G. Rosanna, Miner. Eng. 24, 1603 (2011).CrossRefGoogle Scholar
  24. 24.
    M. Sokić, V. Milošević, V. Stanković, V. Matković, and B. Marković, Hem. Ind. 69, 453 (2015).CrossRefGoogle Scholar
  25. 25.
    M.D. Turan and H.S. Altundoğan, Int. J. Miner. Metall. Mater. 21, 862 (2014).CrossRefGoogle Scholar
  26. 26.
    X. Sun, B. Chen, X. Yang, and Y. Liu, J. Cent. South Univ. Technol. 16, 936 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.Faculty of Land Resource EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  3. 3.China Copper Industry Co. LTDKunmingPeople’s Republic of China

Personalised recommendations