, Volume 70, Issue 11, pp 2468–2474 | Cite as

Microstructures, Compressive Properties, and Microhardness of NiAl-Cr(Mo) Eutectic Alloys With Various Ni Contents

  • Lei WangEmail author
  • Hengxin Xu
  • Jun Shen
  • Yunpeng Zhang
  • Tao Wang
  • Yuhui Ge
  • Luhan Gao
  • Guojun Zhang
Advances in Superalloys and Other High-Temperature Alloys


The microstructures and mechanical properties of 66(NixAl)-28Cr-6Mo (x = 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5) alloys were investigated using scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscope, microhardness, and compression tests. The microstructure of NiAl-28Cr-6Mo (Ni1.0) eutectic alloy consists of NiAl and Cr(Mo) phases. With increasing the Ni content to 2.0, the microstructure changes from eutectic (Ni1.0) to eutectic + primary NiAl dendrite (Ni1.5 and Ni2.0), and the morphologies of part of precipitates in primary NiAl dendrite evolve from granular to needle-like. When the Ni content increases further, besides eutectic and primary NiAl dendrite, the gray phase forms and is identified as an ordered FCC (L12) (Ni,Cr)3(Al,Mo) phase. Moreover, the more needle-like precipitates emerge in the primary NiAl dendrite of Ni2.5, Ni3.0, and Ni3.5 alloys, and the precipitate is identified as a bcc Cr(Mo) phase. The deep etching reveals that the three-dimensional morphology of Cr(Mo) precipitate is not needle-like but lath-like. Among the investigated alloys, both Ni2.0 and Ni2.5 alloys possess the higher fracture strength and microhardness. The relevant strengthening mechanisms are discussed.



The work is supported by the National Natural Science Foundation of China (51501147, 51601144, 51674196); Natural Science Basic Research Plan in Shaanxi Province of China (2016JQ5013); and the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201509).


  1. 1.
    D.R. Johnson, X.F. Chen, B.F. Oliver, R.D. Noebe, and J.D. Whittenberger, Intermetallics 3, 99 (1995).CrossRefGoogle Scholar
  2. 2.
    H. Bei and E.P. George, Acta Mater. 53, 69 (2005).CrossRefGoogle Scholar
  3. 3.
    A. Misra and R. Gibala, Intermetallics 8, 1025 (2000).CrossRefGoogle Scholar
  4. 4.
    J.F. Zhang, J. Shen, Z. Shang, Z.R. Feng, L.S. Wang, and H.Z. Fu, Intermetallics 21, 18 (2012).CrossRefGoogle Scholar
  5. 5.
    D. Yu, H. Bei, Y. Chen, E.P. George, and K. An, Scripta Mater. 84–85, 59 (2014).CrossRefGoogle Scholar
  6. 6.
    D. Yu, K. An, X. Chen, and H. Bei, J. Alloys Compd. 656, 481 (2016).CrossRefGoogle Scholar
  7. 7.
    L. Wang, J. Shen, Z. Shang, and H.Z. Fu, Scripta Mater. 89, 1 (2014).CrossRefGoogle Scholar
  8. 8.
    L. Wang, J. Shen, Y.P. Zhang, and H.Z. Fu, Mater. Sci. Eng. A 664, 188 (2016).CrossRefGoogle Scholar
  9. 9.
    L. Wang and J. Shen, J. Alloys Compd. 663, 187 (2016).CrossRefGoogle Scholar
  10. 10.
    C.Y. Cui, J.T. Guo, Y.H. Qi, and H.Q. Ye, Scripta Mater. 44, 2437 (2001).CrossRefGoogle Scholar
  11. 11.
    J.T. Guo, Ordered Intermetallic Compound NiAl Alloy (Beijing: Science Press, 2003), p. 73.Google Scholar
  12. 12.
    L.Y. Sheng, F. Yang, T.F. Xi, Y.F. Zheng, and J.T. Guo, Intermetallics 27, 14 (2012).CrossRefGoogle Scholar
  13. 13.
    L. Wang and J. Shen, Mater. Mater. Sci. Eng. A 654, 177 (2016).CrossRefGoogle Scholar
  14. 14.
    L. Wang, J. Shen, Z. Shang, J.F. Zhang, J.H. Chen, and H.Z. Fu, Intermetallics 44, 44 (2014).CrossRefGoogle Scholar
  15. 15.
    L.Y. Sheng, F. Yang, T.F. Xi, Y.F. Zheng, and J.T. Guo, Trans. Nonferrous Met. Soc. China 23, 983 (2013).CrossRefGoogle Scholar
  16. 16.
    L.Y. Sheng, W. Zhang, J.T. Guo, and H.Q. Ye, Mater. Charact. 60, 1311 (2009).CrossRefGoogle Scholar
  17. 17.
    L. Wang, J. Shen, Y.P. Zhang, L.L. Guo, H.X. Xu, and H.Z. Fu, Intermetallics 84, 11 (2017).CrossRefGoogle Scholar
  18. 18.
    P.L. Ferrandini, F.L.G.U. Araujo, W.W. Batista, and R. Caram, J. Cryst. Growth 275, e147 (2005).CrossRefGoogle Scholar
  19. 19.
    S. Milenkovic and R. Caram, Metall. Mater. Trans. A 46, 557 (2015).CrossRefGoogle Scholar
  20. 20.
    S. Milenkovic and R. Caram, J. Mater. Process. Technol. 143–144, 629 (2003).CrossRefGoogle Scholar
  21. 21.
    F.J. Wang, Y. Zhang, G.L. Chen, and H.A. Davies, Int. J. Mod. Phys. B 23, 1254 (2009).CrossRefGoogle Scholar
  22. 22.
    F. Otto, A. Dlouhy, Ch. Somsen, H. Bei, G. Eggeler, and E.P. George, Acta Mater. 61, 5743 (2013).CrossRefGoogle Scholar
  23. 23.
    Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, and T.J. Li, Sci. Rep. 4, 1 (2014).Google Scholar
  24. 24.
    Y.P. Lu, X.Z. Gao, J. Li, Z.G. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, and T.J. Li, Acta Mater. 124, 143 (2017).CrossRefGoogle Scholar
  25. 25.
    F. He, Z.J. Wang, P. Cheng, Q. Wang, J.J. Li, Y.Y. Dang, J.C. Wang, and C.T. Liu, J. Alloys Compd. 656, 284 (2016).CrossRefGoogle Scholar
  26. 26.
    F. He, Z.J. Wang, S.Z. Niu, Q.F. Wu, J.J. Li, J.C. Wang, C.T. Liu, and Y.Y. Dang, J. Alloys Compd. 667, 53 (2016).CrossRefGoogle Scholar
  27. 27.
    F. He, Z.J. Wang, Q.F. Wu, D. Chen, T. Yang, J.J. Li, J.C. Wang, C.T. Liu, and J.J. Kai, Scripta Mater. 155, 134 (2018).CrossRefGoogle Scholar
  28. 28.
    Y.L. Chou, J.W. Yeh, and H.C. Shih, Corros. Sci. 52, 2571 (2010).CrossRefGoogle Scholar
  29. 29.
    H.E. Cline, J.L. Walter, E. Lifshin, and R.R. Russell, Met. Trans. 2, 189 (1970).CrossRefGoogle Scholar
  30. 30.
    Y.F. Han, S.H. Li, and M.C. Chaturvedi, Mater. Sci. Eng. A 160, 271 (1993).CrossRefGoogle Scholar
  31. 31.
    P. Perez, P. Gonzalez, G. Garces, G. Caruana, and P. Adeva, J. Alloys Compd. 302, 137 (2000).CrossRefGoogle Scholar
  32. 32.
    S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Acta Mater. 59, 182 (2011).CrossRefGoogle Scholar
  33. 33.
    T.T. Shun, C.H. Hung, and C.F. Lee, J. Alloys Compd. 493, 105 (2010).CrossRefGoogle Scholar
  34. 34.
    J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu, Acta Mater. 102, 187 (2016).CrossRefGoogle Scholar
  35. 35.
    C.Y. Geng, C.Y. Wang, and T. Yu, Acta Mater. 52, 5427 (2004).CrossRefGoogle Scholar
  36. 36.
    L. Wang, J. Shen, G.J. Zhang, Y.P. Zhang, L.L. Guo, Y.H. Ge, L.H. Gao, and H.Z. Fu, Intermetallics 94, 83 (2018).CrossRefGoogle Scholar
  37. 37.
    L. Wang, G.J. Zhang, J. Shen, Y.P. Zhang, H.X. Xu, Y.H. Ge, and H.Z. Fu, J. Alloys Compd. 732, 124 (2018).CrossRefGoogle Scholar
  38. 38.
    L.Y. Sheng, J.T. Guo, Y.X. Tian, L.Z. Zhou, and H.Q. Ye, J. Alloys Compd. 475, 730 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Lei Wang
    • 1
    Email author
  • Hengxin Xu
    • 1
  • Jun Shen
    • 2
  • Yunpeng Zhang
    • 1
  • Tao Wang
    • 1
  • Yuhui Ge
    • 1
  • Luhan Gao
    • 1
  • Guojun Zhang
    • 1
  1. 1.School of Materials Science and EngineeringXi’an University of TechnologyXi’anPeople’s Republic of China
  2. 2.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations