Microstructures, Compressive Properties, and Microhardness of NiAl-Cr(Mo) Eutectic Alloys With Various Ni Contents
- 152 Downloads
Abstract
The microstructures and mechanical properties of 66(NixAl)-28Cr-6Mo (x = 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5) alloys were investigated using scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscope, microhardness, and compression tests. The microstructure of NiAl-28Cr-6Mo (Ni1.0) eutectic alloy consists of NiAl and Cr(Mo) phases. With increasing the Ni content to 2.0, the microstructure changes from eutectic (Ni1.0) to eutectic + primary NiAl dendrite (Ni1.5 and Ni2.0), and the morphologies of part of precipitates in primary NiAl dendrite evolve from granular to needle-like. When the Ni content increases further, besides eutectic and primary NiAl dendrite, the gray phase forms and is identified as an ordered FCC (L12) (Ni,Cr)3(Al,Mo) phase. Moreover, the more needle-like precipitates emerge in the primary NiAl dendrite of Ni2.5, Ni3.0, and Ni3.5 alloys, and the precipitate is identified as a bcc Cr(Mo) phase. The deep etching reveals that the three-dimensional morphology of Cr(Mo) precipitate is not needle-like but lath-like. Among the investigated alloys, both Ni2.0 and Ni2.5 alloys possess the higher fracture strength and microhardness. The relevant strengthening mechanisms are discussed.
Notes
Acknowledgements
The work is supported by the National Natural Science Foundation of China (51501147, 51601144, 51674196); Natural Science Basic Research Plan in Shaanxi Province of China (2016JQ5013); and the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201509).
References
- 1.D.R. Johnson, X.F. Chen, B.F. Oliver, R.D. Noebe, and J.D. Whittenberger, Intermetallics 3, 99 (1995).CrossRefGoogle Scholar
- 2.H. Bei and E.P. George, Acta Mater. 53, 69 (2005).CrossRefGoogle Scholar
- 3.A. Misra and R. Gibala, Intermetallics 8, 1025 (2000).CrossRefGoogle Scholar
- 4.J.F. Zhang, J. Shen, Z. Shang, Z.R. Feng, L.S. Wang, and H.Z. Fu, Intermetallics 21, 18 (2012).CrossRefGoogle Scholar
- 5.D. Yu, H. Bei, Y. Chen, E.P. George, and K. An, Scripta Mater. 84–85, 59 (2014).CrossRefGoogle Scholar
- 6.D. Yu, K. An, X. Chen, and H. Bei, J. Alloys Compd. 656, 481 (2016).CrossRefGoogle Scholar
- 7.L. Wang, J. Shen, Z. Shang, and H.Z. Fu, Scripta Mater. 89, 1 (2014).CrossRefGoogle Scholar
- 8.L. Wang, J. Shen, Y.P. Zhang, and H.Z. Fu, Mater. Sci. Eng. A 664, 188 (2016).CrossRefGoogle Scholar
- 9.L. Wang and J. Shen, J. Alloys Compd. 663, 187 (2016).CrossRefGoogle Scholar
- 10.C.Y. Cui, J.T. Guo, Y.H. Qi, and H.Q. Ye, Scripta Mater. 44, 2437 (2001).CrossRefGoogle Scholar
- 11.J.T. Guo, Ordered Intermetallic Compound NiAl Alloy (Beijing: Science Press, 2003), p. 73.Google Scholar
- 12.L.Y. Sheng, F. Yang, T.F. Xi, Y.F. Zheng, and J.T. Guo, Intermetallics 27, 14 (2012).CrossRefGoogle Scholar
- 13.L. Wang and J. Shen, Mater. Mater. Sci. Eng. A 654, 177 (2016).CrossRefGoogle Scholar
- 14.L. Wang, J. Shen, Z. Shang, J.F. Zhang, J.H. Chen, and H.Z. Fu, Intermetallics 44, 44 (2014).CrossRefGoogle Scholar
- 15.L.Y. Sheng, F. Yang, T.F. Xi, Y.F. Zheng, and J.T. Guo, Trans. Nonferrous Met. Soc. China 23, 983 (2013).CrossRefGoogle Scholar
- 16.L.Y. Sheng, W. Zhang, J.T. Guo, and H.Q. Ye, Mater. Charact. 60, 1311 (2009).CrossRefGoogle Scholar
- 17.L. Wang, J. Shen, Y.P. Zhang, L.L. Guo, H.X. Xu, and H.Z. Fu, Intermetallics 84, 11 (2017).CrossRefGoogle Scholar
- 18.P.L. Ferrandini, F.L.G.U. Araujo, W.W. Batista, and R. Caram, J. Cryst. Growth 275, e147 (2005).CrossRefGoogle Scholar
- 19.S. Milenkovic and R. Caram, Metall. Mater. Trans. A 46, 557 (2015).CrossRefGoogle Scholar
- 20.S. Milenkovic and R. Caram, J. Mater. Process. Technol. 143–144, 629 (2003).CrossRefGoogle Scholar
- 21.F.J. Wang, Y. Zhang, G.L. Chen, and H.A. Davies, Int. J. Mod. Phys. B 23, 1254 (2009).CrossRefGoogle Scholar
- 22.F. Otto, A. Dlouhy, Ch. Somsen, H. Bei, G. Eggeler, and E.P. George, Acta Mater. 61, 5743 (2013).CrossRefGoogle Scholar
- 23.Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, and T.J. Li, Sci. Rep. 4, 1 (2014).Google Scholar
- 24.Y.P. Lu, X.Z. Gao, J. Li, Z.G. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, and T.J. Li, Acta Mater. 124, 143 (2017).CrossRefGoogle Scholar
- 25.F. He, Z.J. Wang, P. Cheng, Q. Wang, J.J. Li, Y.Y. Dang, J.C. Wang, and C.T. Liu, J. Alloys Compd. 656, 284 (2016).CrossRefGoogle Scholar
- 26.F. He, Z.J. Wang, S.Z. Niu, Q.F. Wu, J.J. Li, J.C. Wang, C.T. Liu, and Y.Y. Dang, J. Alloys Compd. 667, 53 (2016).CrossRefGoogle Scholar
- 27.F. He, Z.J. Wang, Q.F. Wu, D. Chen, T. Yang, J.J. Li, J.C. Wang, C.T. Liu, and J.J. Kai, Scripta Mater. 155, 134 (2018).CrossRefGoogle Scholar
- 28.Y.L. Chou, J.W. Yeh, and H.C. Shih, Corros. Sci. 52, 2571 (2010).CrossRefGoogle Scholar
- 29.H.E. Cline, J.L. Walter, E. Lifshin, and R.R. Russell, Met. Trans. 2, 189 (1970).CrossRefGoogle Scholar
- 30.Y.F. Han, S.H. Li, and M.C. Chaturvedi, Mater. Sci. Eng. A 160, 271 (1993).CrossRefGoogle Scholar
- 31.P. Perez, P. Gonzalez, G. Garces, G. Caruana, and P. Adeva, J. Alloys Compd. 302, 137 (2000).CrossRefGoogle Scholar
- 32.S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Acta Mater. 59, 182 (2011).CrossRefGoogle Scholar
- 33.T.T. Shun, C.H. Hung, and C.F. Lee, J. Alloys Compd. 493, 105 (2010).CrossRefGoogle Scholar
- 34.J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu, Acta Mater. 102, 187 (2016).CrossRefGoogle Scholar
- 35.C.Y. Geng, C.Y. Wang, and T. Yu, Acta Mater. 52, 5427 (2004).CrossRefGoogle Scholar
- 36.L. Wang, J. Shen, G.J. Zhang, Y.P. Zhang, L.L. Guo, Y.H. Ge, L.H. Gao, and H.Z. Fu, Intermetallics 94, 83 (2018).CrossRefGoogle Scholar
- 37.L. Wang, G.J. Zhang, J. Shen, Y.P. Zhang, H.X. Xu, Y.H. Ge, and H.Z. Fu, J. Alloys Compd. 732, 124 (2018).CrossRefGoogle Scholar
- 38.L.Y. Sheng, J.T. Guo, Y.X. Tian, L.Z. Zhou, and H.Q. Ye, J. Alloys Compd. 475, 730 (2009).CrossRefGoogle Scholar